Disaggregating Repression: Identifying Physical Integrity Rights Allegations in Human Rights Reports

RESEARCH NOTE

REBECCA CORDELL
University of Texas at Dallas, USA

K. CHAD CLAY
University of Georgia, USA

CHRISTOPHER J. FARISS
University of Michigan, USA

REED M. WOOD
University of Essex, UK

AND

THORIN M. WRIGHT
Arizona State University, USA

Most cross-national human rights datasets rely on human coding to produce yearly, country-level indicators of state human rights practices. Hand-coding the documents that contain the information on which these scores are based is tedious and time-consuming, but has been viewed as necessary given the complexity and detail of the information contained in the text. However, advances in automated text analysis have the potential to streamline this process without sacrificing accuracy. In this research note, we take the first step in creating this streamlined process by employing a supervised machine learning automated coding method that extracts specific allegations of physical integrity rights violations from the original text of country reports on human rights. This method produces a dataset including 163,512 unique abuse allegations in 196 countries between 1999 and 2016. This dataset and method will assist researchers of physical integrity rights abuse because it will allow them to produce allegation-level human rights measures that have previously not existed and provide a jumping-off point for future projects aimed at using supervised machine learning to create global human rights metrics.

La mayoría de los conjuntos de datos transnacionales sobre derechos humanos se basan en la codificación humana para producir indicadores anuales a nivel de país de las prácticas estatales de derechos humanos. Codificar manualmente los documentos que incluyen la información en la que se basan estas puntuaciones es tedioso y demanda mucho tiempo, pero se ha considerado necesario dado la complejidad y el detalle de los datos contenidos en el texto. Sin embargo, los avances en el análisis automatizado de textos tienen el potencial de agilizar este proceso sin afectar la precisión. En esta nota de investigación, damos el primer paso en la creación de este proceso simplificado mediante el empleo de un método de codificación automatizado basado en aprendizaje automático supervisado, el cual extrae las denuncias específicas de violaciones de los derechos a la integridad física de los informes originales sobre derechos humanos de los países. Este método produce un conjunto de datos que incluye 163.512 denuncias de abuso únicas de 196 países entre 1999 y 2016. Dicho conjunto de datos, junto con este método, ayudarán a los investigadores de los casos de abuso de los derechos de integridad física, ya que les permitirán producir medidas de derechos humanos a nivel de denuncia que no existían anteriormente, y les proporcionarán...
un punto de partida para futuros proyectos destinados a utilizar el aprendizaje automático supervisado como una herramienta para crear métricas globales de derechos humanos.

La plupart des jeux de données transnationaux sur les droits de l’homme s’appuient sur un codage humain pour produire des indicateurs nationaux annuels des pratiques de droits de l’homme des États. Le codage manuel des documents contenant les informations sur lesquelles ces scores sont basés est fastidieux et chronophage, mais il a été jugé nécessaire du fait de la complexité et du niveau de détails des renseignements figurant dans les textes. Toutefois, les progrès de l’analyse de texte automatisée ont le potentiel de simplifier ce processus sans compromettre la précision. Dans cet exposé de recherche, nous franchissons la première étape de la création de ce processus simplifié en employant une méthode de codage automatisé par machine learning supervisé qui extrait des allégations spécifiques de violations des droits à l’intégrité physique du texte original de rapports nationaux sur les droits de l’homme. Cette méthode produit un jeu de données comprenant 163 512 allégations de violations uniques dans 196 pays entre 1999 et 2016. Ce jeu de données et cette méthode aideront les chercheurs se consacrant aux violations des droits à l’intégrité physique en leur permettant de produire des mesures des droits de l’homme reposant sur les allégations qui n’existaient précédemment pas tout en offrant un point de départ pour les futurs projets visant à utiliser le machine learning supervisé en vue de créer des métriques internationales relatives aux droits de l’homme.

Introduction

Quantitative datasets on state repression and human rights practices, such as the Political Terror Scale (PTS) and the CIRI Human Rights Data Project (e.g., Cingranelli, Richards, and Clay 2014; Gibney et al. 2018), have traditionally relied heavily on human coders. Such datasets have proven invaluable for scholars investigating cross-national patterns of state and state-sponsored human rights abuses.1 Yet, largely as a result of the research questions they were developed to address and the time-intensive nature of hand-collecting data from extensive amounts of text, these indicators effectively aggregate evidence about specific repressive state practices into a single composite ordinal measure (PTS) or a small number of such measures (CIRI). The categorization processes used to construct the PTS and CIRI measures make use of a substantial amount of qualitative information; however, the variables these processes ultimately produce are rather coarse and retain scant information about the specific actions that inform the measures and/or how human coders used this information. A consequence of the aggregate nature of these indicators is that they are much less informative than the texts used to produce them. In short, the hand-coding process used to generate the measures included in two of the most widely used datasets on state repression results in the exclusion of useful details about the range of human rights abuses that occur within a given country during a year.

Herein, we propose an automated allegation extraction technique that facilitates the collection, coding, and retention of data on a number of different dimensions of human rights violations. This process allows us to create more nuanced datasets that capture a variety of behaviors and actions that are currently understudied and largely ignored in cross-national quantitative human rights research. Specifically, we develop an automated method for extracting physical integrity rights allegations from annual country human rights reports produced by Amnesty International (AI), Human Rights Watch (HRW), and the US State Department (SD) for (1999–2016). We generate a dataset of allegations that will serve to help scholars of repression investigate new questions at a much finer grained level of detail than existing data currently do and overcome some of the acknowledged problems of existing cross-national repression data (e.g., Cingranelli and Richards 2010; Wood and Gibney 2010; Conrad, Haglund, and Moore 2014; Fariss 2014).

Our method has several advantages over existing approaches to data collection from documents. First, our method serves to greatly reduce the time necessary to collect information from human rights reports, producing a dataset of allegations that would take a team of trained researchers years to code by hand. Second, the resulting dataset of allegations lends itself to several new and innovative human rights data projects that move far beyond existing cross-national sources. With limited additional work, our method and data could be used to extract allegations of abuse from a variety of different information sources. Finally, our approach is flexible enough to allow the collection of different types of allegations beyond physical integrity rights.

Motivation

Many of the important empirical patterns related to state repression and human rights abuse identified by scholars derive from analyses of standards-based datasets like the PTS (Gibney et al. 2018) and the CIRI Human Rights Data Project (Cingranelli, Richards, and Clay 2014). These projects relied on the information contained in annual reports produced by the US SD, Amnesty International, and Human Rights Watch.3 As such, these reports—and the datasets that relied on the information within them—have been invaluable resources on which much of the field’s knowledge of cross-national repression has been built.

Scholars acknowledge, however, that the information contained in these reports does not capture the totality of repressive events (e.g., Hill, Moore, and Mukherjee 2013; Conrad, Haglund, and Moore 2014). Rather, they contain a series of allegations that represent a subset of the overall occurrence of repressive acts over the time periods they cover. Furthermore, the relationship between the actual level of repression and the number of repressive acts alleged by reports is non-constant across space and time. For example, differences in media coverage, non-governmental organization scrutiny, US strategic interests and foreign policy objectives, and other factors influence the convergence (or divergence) of the reported number of repressive events from the true number of such events (Poe, Carey, and Vazquez 2001). As such, the count of allegations is a biased undercount of the true number of repressive acts in any

1Many other datasets rely on the human coding of content of annual human rights reports (e.g., Eck and Hultman 2007; Conrad, Haglund, and Moore 2013, 2014).

3While “physical integrity rights violations” and “repression” are not perfect synonyms, the use of the term “repression” as a shorthand for physical integrity rights abuse is common in the existing literature (e.g., Poe, Tate, and Keith 1999). As such, we use the term “repression” interchangeably with “physical integrity rights violations”.

3The PTS includes reports from HRW beginning in 2013.
country in any year (Conrad, Haglund, and Moore 2014, 434). Accordingly, some scholars have suggested that attempts to use the data from these reports to produce conclusions about the causes and consequences of repression should either account for this bias in their analysis (Bagozzi et al. 2015) or use measurement models that treat the reported allegations of repressive acts as generated by the unobservable true level of abuse rather than as an unbiased measurement in their own right (Fariss 2014; Schnakenberg and Fariss 2014). As with the teams that code the PTS and CIRI, we confront this challenge when disaggregating the content of the report.

Current measures in existing datasets do not fully leverage all of the information about the occurrence of repression from the annual reports. In part, this reflects the purpose for which these datasets were created. The creators of standards-based datasets explicitly envisioned them as useful ways to provide annual snapshots or summaries of the human rights conditions within a state. The PTS provided a single composite score that informally captured multiple dimensions of state and state-sponsored physical integrity abuses, including its scope, intensity, and range (see Carlton and Stohl 1981; Wood and Gibney 2010). CIRI added nuance by disaggregating the scope dimensions (e.g., torture, killings, etc.) into individual indicators that could be analyzed separately or combined into a single additive scale. In both cases, coders rely on all of the relevant information contained in the annual reports to assign a given country a given score, but this information used in each report is not retained. Despite the richness of the information included in the reports, coders only utilize the specific events and behaviors in the reports to inform the broadly descriptive measure(s) included in the dataset. By contrast, the Ill-Treatment and Torture (ITT) dataset (Conrad, Haglund, and Moore 2013, 2014), based on every allegation of torture made by Amnesty International from 1995 to 2005, highlights the nuance of the information included in the source data. For example, it acknowledges that the reports contain information regarding the identity of victims, the agency or group responsible for the abuse, the location and timing of the abuse, and other potentially useful details about the event.

As ITT illustrates, allegation-level data can serve to both increase our ability to navigate the problem of the biased undercount in human rights reporting and help us produce more detailed disaggregated data on repressive acts. Yet, no existing dataset catalogs or codes all allegations included in the annual reports produced by the SD, Amnesty International, and Human Rights Watch. In the subsequent sections, we therefore describe existing text analysis applications in political science and then introduce an automated procedure to extract allegations of physical integrity violations from annual human rights reports.

Text Analysis and Human Rights

Following recent innovations in machine learning and the increased digitalization of political texts, automated text analysis has become widely used in political science. To overcome the resource costs of analyzing large corpuses of texts by hand, these methods offer opportunities to pursue new research objectives and replicate human coding processes in a more systematic and rapid manner. Scholars have used online blogs, social media data, press releases, political speeches, and newspaper articles to sort documents into sentiment and topic-related classes on a range of issues (Hopkins and King 2010; Grimmer and King 2011; King et al. 2013; Schrodt and Van Brackle 2013; Jamal et al. 2015; Windsor 2018).

Text Analysis Methods

Several recent studies use novel automated text analysis techniques to better understand empirical patterns and trends in state respect for human rights (e.g., Fariss et al. 2015; Greene, Park and Colaresi 2019; Park, Greene, and Colaresi 2020). However, none of these research projects attempted to replicate the hand-coding approach traditionally employed to produce commonly used human rights measures. To move toward this research objective, we develop an automated classification method that extracts physical integrity rights allegations from annual country reports produced by Amnesty International, Human Rights Watch, and the US SD for (1999–2016). Automated classification programs can be used to organize documents into categories that the researcher defines (supervised approaches) as well as the machine to discover new conceptual structures itself (unsupervised approaches) (Grimmer and Stewart 2013; Lucas et al. 2015).

When the categories are known and specified in advance, dictionary methods provide a straightforward way of sorting and coding texts based on whether the content in the text fulfills the pre-specified conditions. Once developed, dictionaries provide a cheap and simple approach to segmenting, organizing, and summarizing texts by specifying a list of words that are commonly associated with certain concepts that the researchers are trying to measure, such as tone, topic prevalence, or ideology (e.g., see Cordell et al. 2020; Murdie, Davis, and Park 2020). For this process to be effective, researchers must possess sufficient substantive knowledge of the conceptual categories, and the meanings of the words, and text features specified must match the context in which they are being analyzed.4 There are high pre-analysis and post-analysis costs to building a dictionary, from selecting the words to matching the context to which the model under and over fits the data. Moreover, the model must be thoroughly validated to ensure that the words contained in the dictionary accurately map onto the text and concepts that the researcher is trying to measure (Quinn et al. 2010; Grimmer and Stewart 2013).

By contrast, supervised learning approaches for classification tasks use hand-coded data (training data) to train a model to replicate the human process of splitting and coding texts into predefined categories. The accuracy of the model can be validated by examining the extent to which it correctly predicts out-of-sample data (test data) that the machine was not exposed to during the training process. Similar to the dictionary-based approach, relevant features of the text are identified by humans in advance, but the model itself decides which aspects are more integral for mapping the conceptual categories onto the data (Greene, Park, and Colaresi 2019; Park, Greene, and Colaresi 2020).

Finally, unsupervised modeling approaches used to classify texts are run independent of any training data that includes categories known to the researcher or indicates the way a text is structured (Quinn et al. 2010; Bagozzi and Berliner 2018; Potz-Nielsen, Ralston, and Vargas 2018). The benefits of employing this method include minimal pre-analysis and the ability to uncover new features within the text that are theoretically useful that the researcher may not have anticipated. However, interpreting and validating the

4Most dictionaries are custom-built according to the topics analyzed and sources used, but there is also a series of standardized dictionaries that provide keywords for a variety of categories (e.g., Hari 2000).
results through experimental, substantive, and statistical evidence is an important step to ensure that the model identifies theoretically relevant concepts and correctly selects sections of the text that pertain to the categories (Grimmer and Stewart 2013; Lucas et al. 2015).

Previous research suggests that machine-coding methods can produce the same levels of accuracy as human-coded approaches (Bagozzi et al. 2019). While there has been some debate on the superiority of supervised versus unsupervised machine learning methods for analyzing texts (e.g., Hillard et al. 2008), the automated approach adopted should be selected based on its suitability to achieve the desired research objective. Therefore, we use a supervised machine learning approach5 that uses training data containing 31,061 unique examples of sentences containing physical integrity rights allegations collected by human coders to assign a probability and a binary classification to each sentence on the likelihood of it being a physical integrity rights allegation.6

Human Rights Applications

Scholars have previously used machine-coding approaches to explore potential biases in annual country reports and uncover lexical patterns in the coding of human rights protection scores. For example, Bagozzi and Berliner (2018) utilize an unsupervised structural topic model to measure the salience of human rights categories over time in the US SD country reports. They find variation in the prevalence of terms associated with specific human rights topics over time and that the prevalence of these terms increases among US military allies, aid recipients, and trade partners. Park, Greene, and Colaresi (2020a) apply an aspect-based sentiment analysis to identify specific features of hierarchical human rights reports, such as positive or negative coverage or intensity of coverage. Park, Murdie, and Davis (2019) evaluate how the issues and topics in reports co-evolve over time in human rights documents produced by eighteen NGOs and two UN human rights bodies. Their analysis reveals an increase in information over time, the emergence of new topics (including LGBT rights, children’s rights, and religious freedom), and the inter-relatedness of topics. Expanding the focus to Amnesty International and the US SD annual country reports, Potz-Nielsen et al. (2018) use an event data-coding approach to sort sentences into allegations related to civil and political rights, economic, social, and cultural rights, and physical integrity rights for a small number of countries. As anticipated, they find differences in the amount, density, and type of information found within the documents; highlighting the impact of organizational dynamics on the data-generating process. Additionally, Fariss et al. (2015) construct a large document term matrix for all human rights reports produced from 1974 to 2014 by several reporting agencies to explore word frequency patterns over time and identify the most important keywords contained in the reports for the PTS coding, CIRI human rights variables, and Hathaway torture scale coding.

We build on existing automated approaches to measuring human rights by reducing the time necessary to collect information from human rights reports that can be implemented as new reports are released each year. The resulting dataset of allegations is the first of its kind and lends itself to several new and innovative human rights data projects that move far beyond existing cross-national sources. For example, these allegations (alongside further training data) could automate the classification of violation type, type of actor responsible for the violation (i.e., state versus non-state), location of the violation, and intensity of the violation at the allegation-level. Moreover, the method presented in this paper could also extract allegations of abuse from several different information sources and is flexible enough to allow the collection of different types of allegations beyond physical integrity rights, such as civil liberties, labor rights, worker’s rights, or gender rights.

Data and Methods

We develop an automated method for extracting physical integrity rights allegations from annual country reports produced by Amnesty International, Human Rights Watch, and the US SD for (1999–2016). Human rights scholars continue to rely on these texts to develop hand-coded measures of countries’ respect for human rights over space and time. We implement a text-as-data approach to replicate the first stage of this hand-coded process and segment the reports into allegations describing physical integrity rights (disappearances, torture, killing, and political imprisonment) by country-year at the sentence level. Future researchers can therefore avoid the costs of extracting allegations directly from the reports by hand and ensure that the information used in any new measures is reproducible. Since the process for extracting allegations is automated, we will also be able to continue digitizing annual human rights reports and produce new allegation data relating to physical integrity rights violations organized by report, country, and year as they are released.

Data

Our digital corpus of primary source human rights documents includes the raw text of 7,445 annual human rights reports for 196 countries produced by Amnesty International, Human Rights Watch, and the US SD for 1999–2016. Each report provides a detailed overview of a country’s human rights behavior for a given year. They include both general statements that summarize the intensity of human rights violations as well as detailed descriptions of human rights abuses at the event level. For example, the 2011 Amnesty International report for India summarizes the intensity of abuses in the country by stating that “torture and other ill-treatment, extrajudicial executions, deaths in custody and administrative detentions remained rife” (2011, 166). However, the report also describes numerous specific instances of abuse, such as “[i]n May, Adivasi leader Laxman Jamuda was killed when police fired at people protesting against the acquisition of Adivasi lands for a proposed Tata Steel project in Kalinganagar, Orissa” (2011, 168). The reports are “highly structured” with specific sections relating to different categories of human rights violations that enable a country’s performance on human rights to be assessed over time (Fariss et al. 2015, 3).7 Diagram 1 displays the data

5 We use a supervised machine learning method as opposed to a dictionary-based approach because it is less likely to produce false positives. For example, a sentence may contain a keyword relating to physical integrity rights but may not be a physical integrity rights allegation. By drawing upon examples from our training data of sentences that contain key terms and are indeed physical integrity rights allegations, our supervised machine learning model can more accurately classify which sentences are and are not physical integrity rights allegations based on other (non-dictionary) terms included in the sentences.

6 These outcomes are interdependent as the binary classification each model produces is derived via the model’s probability distribution.

7 Although the changing standards in the accountability of human rights have led to important differences in reports over time, including the length of
processing, model fitting, and evaluation process that we use to generate our sentence-level allegation dataset. We describe each of the steps in detail below.

Data Preprocessing

We begin by preprocessing the documents. First, we add line numbers to all 7,445 ASCII text files to enable users to trace the original location of each physical integrity rights allegation within the text. Second, we segment each text into sentences as most physical integrity rights allegations only contain one sentence. To do this, we use the Open Natural Language Processing (NLP) Maxent_Sent_Token_Annotator command that uses a probability model to detect the boundaries of sentences. This model is trained on a corpus with annotated sentence boundaries and splits sentences according to the features of words to the left and right of punctuation marks (Reynar and Ratnaparkhi 1997).

Next, we create a line number and identification variable for each sentence and clean the text. We develop regular expression algorithms to correct all strings concatenated or separated in error and remove unnecessary white space, punctuation, numbers, hyperlinks, page formatting language encoded text, non-ASCII characters, and stop words (e.g., “are”, “at”, “by”, “from”, “that”, “the” etc.). We also convert all text to lower case to streamline the classification process and avoid duplication for capitalized and small letter versions of the same word. For the same reason, we apply a Porter stemming algorithm to reduce all words to their base root form (e.g., “killed”, “kill”, and “killing” would all be condensed to “kill”), as these terms all capture the same concept of interest (Porter 1980). We use this cleaned version of our corpus for analysis, but we also retain the original text to improve readability and enable alternative uses of the allegation data in future research. Finally, we create a variable that counts the total number of words in each sentence to help identify and remove observations in our dataset that are not, in fact, sentences. Together, these preprocessing steps convert our corpus of text files into 2,013,199 sentences.

Classification Method

Our classification method for identifying physical integrity rights allegations in our corpus of primary human rights documents uses a supervised machine learning approach. First, we train supervised machine learning models on training data collected by human coders that assign the value of 1 to sentences that the model predicts as physical integrity rights allegations, and 0 otherwise. Second, we extract probabilities from the best performing machine learning algorithm, assigning a value to each sentence between 0 and 1, with a higher value indicating that the sentence is more likely to include material on physical integrity rights abuse. The probability estimate allows future researchers to determine their own probability threshold for classifying sentences as physical integrity rights allegations.

Supervised Machine Learning Models

We train supervised machine learning models using human coded training data extracted from Amnesty International, Human Rights Watch, and the US SD for six pilot countries for 1999–2016 (Angola, Belarus, Mexico, Nigeria, Philippines, and the United Kingdom) and all countries in 2012. Our training data includes a total of 195,924 sentences, with human coders identifying 16 percent as physical integrity rights allegations (31,061 sentences) and 84 percent as non-physical integrity rights sentences (164,863 sentences). Table 1 displays the distribution of our training data over space and time. This data was constructed by a team of graduate and undergraduate research assistants that extracted all allegations of physical integrity rights abuse in the annual human rights reports produced by Amnesty International, Human Rights Watch, and the US SD for six pilot countries for 1999–2016 (Angola, Belarus, Mexico, Nigeria, the Philippines, and the United Kingdom), all countries in 2012, and a random sample.

Our pilot countries vary on primary indicators of country-level human rights performance, including regime type, economic development, population level, and civil conflict involvement, and have full coverage across Amnesty International and the US SD reports (Hill and Jones 2014). By including reports for all countries in 2012, for all years for

8 Occasionally, an allegation contains more than one sentence. To account for this, we create a binary variable in our dataset that indicates whether the sentence before or after contains a term related to physical integrity rights abuse. In addition, users are also able to view the content of surrounding sentences of allegations through our line number variable.

9 We apply a regular expression algorithm to correct strings concatenated in error by a period.

10 A punctuation mark is not a sufficient indicator for the end of a sentence. For example, a period can have many different uses, including a decimal point, an ellipsis, and an abbreviation.

11 We remove sentences containing fewer than two words as they do not contain useful information and are primarily the result of our sentence splitter segmenting a hyperlink into multiple sentences after each period.

12 In order to transform the SVM model binary classification into probability estimates, we use the Platt scaling method that fits a logistic regression to the SVM model scores to generate probability distributions over classes.
Table 1. Training data

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Number of allegation sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>1999–2016</td>
<td>2,456</td>
</tr>
<tr>
<td>Belarus</td>
<td>1999–2016</td>
<td>2,889</td>
</tr>
<tr>
<td>Mexico</td>
<td>1999–2016</td>
<td>6,259</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1999–2016</td>
<td>2,455</td>
</tr>
<tr>
<td>The Philippines</td>
<td>1999–2016</td>
<td>2,704</td>
</tr>
<tr>
<td>The United Kingdom</td>
<td>1999–2016</td>
<td>1,144</td>
</tr>
<tr>
<td>All countries</td>
<td>2012</td>
<td>12,615</td>
</tr>
<tr>
<td>Random sample</td>
<td>1999–2016</td>
<td>589</td>
</tr>
</tbody>
</table>

our pilot countries, and a random sample, our data captures variation in the different types of physical integrity rights abuses that take place around the world and accounts for changes in language and topical attention over time. Allegation observations in our training data contain the quote from the report, in addition to country, year, report, report page number, and line number from which each allegation was obtained.

In our instructions for coders, we define an allegation, or “informative statement”, as a sentence, or group of sentences, that provides information about the enjoyment of physical integrity rights (i.e., freedom from disappearance, extrajudicial killing, torture, ill-treatment, and arbitrary arrest and imprisonment) in the country being discussed in the assigned human rights report. In most cases, an allegation will only contain one sentence; each sentence in a report that contains information about the enjoyment of physical integrity rights will be part of an observation in this first stage of data collection. However, some observations in our training data are based on multiple sentences if additional information is necessary to add to or complete the information provided by the first sentence. Consequently, we can always delete extraneous information after it has been captured and have thus far encouraged our research assistants to collect additional text when in doubt. Our human-coded allegation extraction thus likely over captures allegations, including some statements that are effectively uninformative on the level of physical integrity rights abuse. We include our physical integrity rights data collection instructions in Online Appendix A.

To improve efficiency, we pre-process the clean stemmed version of the text by reducing it to only the most common terms in our corpus (removing less frequent terms whose sparsity is greater than 99 percent). Because this process removes many terms relevant to physical integrity rights, we create a dictionary of keywords and combine these with the common terms for the clean stemmed version of the text. We then create a document-term-matrix (DTM) that records the word count of common terms and keywords that appear in each sentence in our training data (413 unique terms in total) and add a binary variable that indicates whether human coders coded the sentence as a physical integrity rights allegation.

We identify key terms relevant to physical integrity rights using our training data containing 31,061 unique examples of allegations collected by human coders. To identify relevant terms in the training data that are used to describe disappearances, extrajudicial killings, torture and ill-treatment, political imprisonment, and other forms of arbitrary arrest and detention, we create a DTM that produces a word count for each term included in our training data, with the columns corresponding to the unique words and the rows corresponding to the sentences. This procedure produces a list of the most frequent terms contained for allegations in the training data. We then select terms from this list as physical integrity rights keywords based on their relevance to physical integrity rights abuse (e.g., where “abuse” is more relevant than “according”). Online Appendix B displays the unique keyword terms that we extract from the training data (172 terms).

Using the training data DTM of physical integrity rights keywords and the most common terms in our corpus, we use three different supervised machine learning algorithms (support-vector machine (SVM), Naive Bayes, and logistic regression) to predict which sentences in our dataset are physical integrity rights allegations. We train the models on 80 percent of the training data (156,740 sentences) using repeated k-fold cross validation. This procedure splits the training data into five k-subsets, with each subset removed from the sample and trained on all other subsets—repeated five times. Each model finds patterns in the training data that relate the word count of key terms and common words contained in a sentence to its binary classification as a physical integrity rights allegation. Sentences that the model classifies as containing information on physical integrity rights are assigned a value of 1; 0 otherwise. We then extract probabilities from the best performing machine learning algorithm to assign a probability to each sentence, with a higher value indicating that the sentence is more likely to include material on physical integrity rights abuse. Online Appendix C displays examples of how our model codes some sentences in our training data along with the probability of an allegation and a binary measure (Final Allegation Dataset), with the keywords highlighted in bold in the sentence and the word count of common terms and keywords in the DTM.

Results

In order to evaluate the accuracy of the supervised machine learning models, we compare the classes that our models and human coders assign to these sentences in-sample (on 20 percent of the training data, 39,184 sentences) and out-of-sample (test data from our human rights corpus for India from 1999 to 2016 and a random sample from 1999 to 2016, 33,069 sentences). The results from our analysis show that this method achieves between 84 and 88 percent in-sample accuracy and 81 and 84 percent in-out-of-sample accuracy, tables 2 and 3 display the in-sample and out-of-sample accuracy of each model, measured as the mean accuracy over each of the five k-sub-samples. The logistic regression algorithm has the greatest out-of-sample accuracy in correctly predicting classes of sentences identified by human coders as physical integrity rights allegations at 84.3 percent. We also use an ensemble method that combines the predictions from each of the models via a majority vote. This approach performs slightly better on

\[13\] We exclude numbers, stop words, and rare terms from the text that appear in less than 5 percent of the allegations.

\[14\] We add terms that appear frequently in the physical integrity rights allegations in our training data but are not direct physical integrity rights terms in order to better assess the interaction between terms. For example, it may be the case that sentences with the term “kill” are more likely to be physical integrity rights sentences when the term appears with “police” or “secur” (i.e., when the police and security forces kill individuals as opposed to deaths that take place in communal settings).

\[15\] We use a hard voting ensemble that sums the predictions of the SVM, Naive Bayes and logistic regression and predicts the class for each sentence with the most votes. For a similar approach, see Greene, Park, and Colaresi (2019).
generating out-of-sample predictions than any one of the machine learning algorithms alone. The precision (the ratio of correct positive predictions to the total predicted positives) of this measure is 41 percent, the recall (the ratio of correct positive predictions to the total number of true positives and false negatives) is 58 percent, and the F1 score (that takes into account the balance of precision and recall) is 49 percent. The area under the curve for the receiving operator characteristic (AUC ROC), which reflects the ability of the model to separate physical integrity rights allegations from non-physical integrity rights allegations, is 68 percent. The AUC for the precision and recall (AUC PR), indicating the average precision for each recall threshold, is 39 percent.

The ensemble supervised machine learning approach classifies an additional 1,734 sentences (5 percent of the out-of-sample test data) as physical integrity rights allegations that our team of human coders did not identify as physical integrity rights allegations. The reason is two-fold. On the one hand, there are many sentences that our automated approach successfully identifies as containing information on physical integrity rights abuses, such as killings, torture, political imprisonment, and detention. This result demonstrates how this automated allegation extraction technique can be used to overcome human error associated with identifying physical integrity rights allegations in human rights reports by hand (i.e., missing cases of allegations in the text). On the other hand, there are some sentences that

16 Accuracy is the proportion of 1s and 0s correctly classified or predicted from the model. Precision is the proportion of true positive predictions relative to the total number of positive predictions from the model. Recall is the proportion of true positive predictions relative to the total number of true predictions and missed predictions from the model. The F1 Score is the harmonic mean of the Precision proportion and the Recall proportion, which is equivalent to Accuracy when the proportion of 1s and 0s is equal.

17 AUC ROC is the average of the proportion of true positive predictions for all prediction thresholds from 0 to 1. Area under the precision recall curve is the average recall proportion for all recall thresholds from 0 to 1.

18 While we still consider human-coded data as the gold standard, the supervised machine learning method allows us to go above and beyond standard practices used by researchers to account for human error and disagreement among coders (e.g., using multiple trained coders to code each observation).
Figure 2. Number of allegations by country.

our automated approach identifies as being a physical integrity rights allegation but that are not directly related to the concept, including information on human rights investigations and intercommunal conflict. This is because some terms included in our physical integrity rights dictionary have multiple meanings (e.g., “cut”, “return”, “release”) or only relate to physical integrity rights under some circumstances, with human coders being better at taking in the overall context of sentences (e.g., “die”, “violence”, “kill”). Conversely, the ensemble supervised machine learning approach does not classify 3,447 sentences (10 percent of the out-of-sample test data) as physical integrity rights allegations that our team of human coders does identify as physical integrity rights allegations. First, our human coders over-capturing allegations because we encouraged our research assistants to collect statements when in doubt since we can always delete extraneous information after it has been captured. Second, this could be because our machine-coded approach was too strict in its classification of physical integrity rights allegations and unnecessarily excluded sentences containing relevant information. For example, some of the physical integrity rights allegations missed by our model include more general terms in our dictionary such as “humanright”, “alleg”, and “violat” rather than sentences that contain more specific terms relating to physical integrity rights such as “torture” and “disappear”. Future researchers can overcome this issue by utilizing our probability estimate to lower or raise the threshold for including sentences that might relate to physical integrity rights.

Our ensemble model (the classification approach with the highest accuracy) creates a dataset of physical integrity rights allegations that assigns a binary classification to all 2,013,199 sentences in our data via a majority vote from our individual machine learning algorithms. The procedure indicates 8 percent of sentences in our corpus of human rights documents contain information related to physical integrity rights abuse (163,512). To accompany our physical integrity rights binary variable, we extract probabilities from the logistic regression model (the single algorithm that produces the
highest accuracy) that capture the likelihood of it being a physical integrity rights allegation. The probability estimate provides future researchers with the flexibility to determine their own probability threshold for classifying sentences as physical integrity rights allegations. The probability threshold simultaneously produces the greatest accuracy, precision, recall, and F1 score is 50 percent. This is the probability threshold used by the logistic regression binary measure to code sentences in our corpus as physical integrity rights allegations (see Tables 2 and 3). Researchers can also decrease or increase the probability threshold if they are most interested in increasing precision (a lower false positive rate) or recall (a lower false negative rate). For example, a 45 percent probability threshold achieves the same level of accuracy (84 percent) (determined by evaluating the percentage of correctly identified physical integrity rights allegation in the out-of-sample test data) but increases the precision at the cost of decreasing the recall. Conversely, a 55 percent probability threshold also achieves 84 percent accuracy but increases the recall at the cost of decreasing the precision. While the predicted probabilities are informative, a good measure should reduce both the false positive and the false negative rate, which is why we choose the majority vote binary measure to create our dataset of physical integrity rights allegations.

The majority of physical integrity rights allegations in our new allegation dataset, which were identified by the ensemble majority vote method, are extracted from the human rights reports produced by the US SD (120,618 allegations), followed by Amnesty International (28,758 allegations), and Human Rights Watch (14,136 allegations). The greatest number of allegations is extracted from reports produced for the year 2001 (12,242 allegations), with the lowest number originating from reports produced for the year 2013 (6,598 allegations). Figure 1 displays the number of allegations identified by our classification model over time, by organization.19

We illustrate the top ten countries with the greatest number of allegations identified by our model over the entire period (1999–2016). We should note that the total number of allegations is not a measure of the relative severity of one country compared to another, but rather the relative level of monitoring that each country receives in these particular reports.20 These countries include Israel (3,870 allegations), India (3,429 allegations), Russia (3,425 allegations), Colombia (3,102 allegations), the Democratic Republic of Congo (2,943 allegations), China (2,923 allegations), Mexico (2,873 allegations), Pakistan (2,795 allegations), Iraq (2,560 allegations), and Indonesia (2,556). The country with the lowest number of allegations extracted from reports is Tuvalu (63 allegations), and the average number of allegations extracted is 384 (e.g., Gambia). Figure 2 displays the total number of allegations identified by our classification model, by country.21

Table 4 displays the top twenty physical integrity rights terms with the greatest frequency in the allegation dataset.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>kill</td>
<td>44,227</td>
</tr>
<tr>
<td>arrest</td>
<td>34,876</td>
</tr>
<tr>
<td>tortur</td>
<td>29,992</td>
</tr>
<tr>
<td>forc</td>
<td>29,641</td>
</tr>
<tr>
<td>detent</td>
<td>21,075</td>
</tr>
<tr>
<td>prison</td>
<td>19,978</td>
</tr>
<tr>
<td>secur</td>
<td>19,498</td>
</tr>
<tr>
<td>arbitri</td>
<td>17,765</td>
</tr>
<tr>
<td>alleg</td>
<td>17,746</td>
</tr>
<tr>
<td>beat</td>
<td>17,367</td>
</tr>
<tr>
<td>detain</td>
<td>17,262</td>
</tr>
<tr>
<td>humanright</td>
<td>15,839</td>
</tr>
<tr>
<td>abus</td>
<td>14,161</td>
</tr>
<tr>
<td>charg</td>
<td>14,107</td>
</tr>
<tr>
<td>attack</td>
<td>13,754</td>
</tr>
<tr>
<td>death</td>
<td>11,984</td>
</tr>
<tr>
<td>disappear</td>
<td>11,700</td>
</tr>
<tr>
<td>suspect</td>
<td>10,957</td>
</tr>
<tr>
<td>sever</td>
<td>10,054</td>
</tr>
<tr>
<td>treatment</td>
<td>9,909</td>
</tr>
</tbody>
</table>

Notes: Top twenty keywords with the greatest frequency in the allegation sentences. We use these allegations and term counts in a series of country-year level validation assessments in Online Appendix E.

The term with the highest frequency is “kill” (mentioned 44,227 times), the term with the lowest frequency is “criminality” (mentioned once), and the average number of times a term occurs is 3,839 (e.g., “mistreat”). The average number of keywords in an allegation is four terms, with a minimum of zero and a maximum of forty-three. We use allegations and term counts in a series of country-year level validation assessments in Online Appendix E.

Conclusion

In order to capture physical integrity allegations contained in three sets of human rights monitoring reports, we employed a supervised learning approach to extract and verify the allegations. Existing data projects have long relied on human coders to produce annual standards-based scores on country-level repressive activities. In order to overcome the costs of analyzing large corporuses of texts by hand, these methods enable us to replicate human coding processes in a more systematic and timely manner, with high degrees of accuracy. Indeed, it took approximately 4,000 person-hours to hand code the training data used to produce our dataset. At that rate, obtaining the same data using human coders would have taken somewhere around 44,000 person-hours overall.

The sentence allegation data are useful for several purposes. By developing a more fine-grained approach to gathering data, such as pulling out the allegations and assembling them into a database as we have done here, other researchers and teams will be able to investigate and generate their own estimates for new questions related to physical integrity abuse (see additional validation evidence in Online Appendix E). Researchers may also employ similar methods to generate allegations of abuse that pertain to different categories of human rights beyond physical integrity. This is because the sentence-level allegations from human rights monitoring reports are the key building blocks for all standards-based human rights variables. By systematically

19 An annual report was not produced by Human Rights Watch in 2003 or Amnesty International in 2013.
20 While the United States receives a large amount of coverage in the AI and HRW reports, it is not covered at all by the USDS reports, which provide the vast majority of global allegations. This greatly reduces the US’s relative coverage overall.
21 Country reports for China contain allegations for Macau, Hong Kong, Taiwan, and Tibet; country reports for Israel contain allegations for Palestine and the occupied territories; country reports for Morocco contain allegations for Western Sahara; and country reports for the United States contain allegations for Puerto Rico. See an aggregate world map in Online Appendix D.
identifying these sentence-level allegations within each report, any measurement project can train human coders or an algorithm to focus exclusively on these allegations when developing variables for the country-level or other units of analysis.

Our new data and approach contribute to the study of human rights violations, which suffer from an information problem stemming from incomplete reporting, thus resulting in event counts that are usually biased under counts. Because of this, using standards-based information from monitoring reports makes sense for measuring human rights performance in relation to other sources of event-based information (e.g., Fariss, Kenwick, and Reuning 2020). However, prior attempts at directly measuring human rights performance with these reporting sources are also not leveraging the level of detail contained in these reports, limiting the applications of variables generated from the reports. We systematically leverage information at a level of detail not previously used. With sentence-level information, we can estimate new standards-based variables of human rights performance in a transparent and reproducible way.

We also provide some cautionary advice for future users of this sentence-level dataset. First, our measurement approach and data provide researchers with the ability to shrink or expand the concept and resulting measure. For example, scholars could take a more expansive view of physical integrity rights and identify an expanded set of sentences for their measure. On the other hand, scholars could take a stricter legal view for their concepts and measures. Second, we urge scholars not to use counts from the reports as direct measures of abuse. Instead, we advise that measurement models be used to both account for uncertainty and make different levels of coverage comparable across cases. The reports themselves are not a census of events, and our sentence-level data are not either. Any measures created using the sentence-level data should be thoroughly validated. Third, we do not currently identify current and past references to human rights violations, which are additional information that future research may wish to identify and incorporate into measurement models that combine these sentence-level data. Finally, we hope that by identifying and classifying the sentence-level data from Amnesty International, Human Rights Watch, and the US SD reports, we will be able to extend our approach to a much broader set of information sources.

In future research, we plan to use these allegations alongside additional training data to automate the classification of violation type, the type of actor responsible for the violation (i.e., state versus non-state), the location of the violation, and the intensity of the violation at the aggregation level. Alongside other automated coding processes, event data coding (who did what to whom, when and where) can also be automated. This approach can be used to develop a variety of new data sources for human rights researchers seeking to pull allegations from new documents or to extract different types of allegations from our sources.

Funder Information

This project was supported by the National Science Foundation, award numbers 1627464, 1626775, and 1627101.

References

