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Abstract

In this chapter, we discuss several measurement models that link data to theoretical
concepts. We discuss the underlying assumptions of these models and how these assump-
tions can be relaxed to accommodate different forms of conceptual dependencies between
units, in particular, temporal interdependence in time-series, cross-sectional data. These
latent variable models should be of particular use to political scientists studying the dy-
namics of institutional development, decision making over time, and any other process that
the researcher believes might follow some form of path dependent process. We center our
discussion around construct validity. We close with a review of several recent advances in
latent variable modeling applications, which build on the models presented in this chapter,
and a discussion of best practices for future research.



1 Introduction

Measurement models in general and latent variable models in particular are now common

in political science research. This is because political scientists are increasingly focused on

improving the measurement of unobservable concepts and understanding the relationships

and potential biases between different pieces of observable information and the measurement

procedures that link this information to theoretical concepts. Recent methodological and

computational advances have led to a flourishing of new latent variable modeling applications.

These new tools provide researchers with a means of measuring difficult to observe concepts

based on events, ratings, or other pieces of observable information that are assumed to be a

result of the underlying unobservable latent trait.1

Latent variable models are built on the idea that observable variables are manifesta-

tions of an underlying conceptual process that is not perfectly observable or knowable and

includes increasingly computationally sophisticated probability models (e.g., Imai, Lo and

Olmsted 2016; Jackman 2000, 2001; Martin and Quinn 2002; Plummer 2017; Carpenter et al.

2016) and computationally simply additive scales (e.g., Guttman 1949; van Schuur 2003) In

this chapter, we review the scientific measurement process and the assumptions needed to

construct models of unobservable theoretical concepts.

The scientific process of measurement occurs in three iterative stages: conceptualization

of the sociological or physical system being studied, operationalization of the data generating

process that approximates the system, and empirical analysis of the data generated by that

system. The relationship between each of these steps is assessed using construct validity

tools.2 Because the measurement process is iterative, it is incumbent on the researcher to

1For the purposes of this chapter, we focus exclusively on unidimensional measurement

models, that are explicitly created in an effort to link observed data to an unobservable

concept.

2The development of the concept of construct validity has occurred over many decades.
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(1) acknowledge the starting point of the measurement process and (2) provide an assess-

ment of the quality of the links between these steps. We provide more details about these

recommendations throughout this chapter although our focus here is on how latent variable

models can be used to assess these steps.

Latent variable models allow for the empirical assessment of how the different observed

pieces of data relate to one another through their association with the estimated latent trait.

Even computationally simple additive scales are models that represent an underling latent

concept. Additive scales require the same process of assessment as more computational diffi-

cult latent variable approaches (van Schuur 2003). We discuss these additive scaling models

as a starting point for thinking about estimating latent variable models more generally,

because these models share the same set of assumptions. New computationally sophisti-

cated latent variable models allow the researcher to relax these assumptions in conceptually

meaningful ways.

The particular examples of latent variable models that we review in this chapter have

been applied across a variety of subfields, encompassing the study of political ideology (Bar-

bera 2015; Bond and Messing 2015; Martin and Quinn 2002; Caughey and Warshaw 2015;

Primary contributors include Campbell (1960); Campbell and Fiske (1959); Campbell and

Ross (1968); Cook and Campbell (1979); Shadish (2010); Shadish, Cook and Campbell

(2001). However, the conceptual meaning of the terms used in these article have evolved

over time. As Jackman (2008) notes, “there are several species of measurement validity. But

at least in the context of latent variables, the term ‘construct validity’ has lost much of the

specificity it once had, and today is an umbrella term of sorts.” We use the term construct

validity in this way and point out specific sub-types where appropriate. We note further

that different fields and subfields use the various construct validity terms in different ways,

which has lead to some confusion when translating across terms. Adcock and Collier (2001)

review this issue in brief, but like them, we leave a full accounting for the agreement and

disagreement of overlapping validity concepts to future work.
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Kōnig, Marbach and Osnabrügge 2013; Pan and Xu 2018; Treier and Hillygus 2009; Windett,

Harden and Hall 2015), political attitudes, knowledge, and preferences (Blaydes and Linzer

2008; Pérez 2011; Jesse 2017; Stegmueller 2011, 2013), regime institutions (Treier and Jack-

man 2008; Pemstein, Meserve and Melton 2010; Kenwick 2018), UN voting positions (Voeten

2000), human rights abuse (Schnakenberg and Fariss 2014; Fariss 2014, 2019; Fariss, Kenwick

and Reuning 2020), human rights treaty embeddedness (Fariss 2018b,a), judicial indepen-

dence (Linzer and Staton 2016), and institutional transparency (Hollyer, Rosendorff and

Vreeland 2014). We discuss several latent variable models that are capable of accommo-

dating different forms of conceptual dependencies between units, in particular, temporal

interdependence in time-series, cross-sectional data. We provide examples that build on

insights from a recently published article on temporal dependence and sudden temporal

changes in time series cross sectional data (Reuning, Kenwick and Fariss 2019).3

After discussing the measurement process and construct validity in more detail (Section

2), and laying out different dynamics of latent variables (Section 3) we highlight places that

we believe are ripe for future research. In particular we discuss new ways to theoretically

include time in latent variable models (Section 4.1), ways to scale expert surveys (Section

4.2), the use of Multiple-Indicator-Multiple-Causes models (Section 4.3), and issues with

different model fit statistics (Section 4.4). Finally we end with a list of recommendations for

the applied researcher using latent variable models (section 4.5).

3Reuning, Kenwick and Fariss (2018) provides a complete and detailed set of replication

files that demonstrate how to use these particular latent variable models using both applied

examples and a set of simulation-based models: https://doi.org/10.7910/DVN/SSLCFF.
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2 The Measurement Process

The process of measurement can be broadly characterized as having three steps.4 The process

of measurement allows the researcher to think explicitly about each of these three steps

and the relationships between them because it links theories, the concept, with operational

procedures, the construct, which generate observable information, the data. We discuss each

of these steps here.

In the first step, a researcher generates a systematized definition of a concept they are

interested in. The systematized definition should be specific enough to have intellectual

traction, but sufficiently broad so that it can be meaningfully applied to a set of objects

across time, space, or both (Shadish 2010). What does this mean in practice? That there

is necessarily a trade-off between specificity and generalizability and, when applied, the re-

searcher must clarify the boundary conditions that define the set of objects for which the

measurement procedure operates and the set for which it does not. At the extreme, the con-

ceptual process should cover more than one object, but less than all objects. Specifying these

boundary conditions is part of the conceptual step in the measurement process. However,

because the measurement process is iterative, the researcher can and should return to this

first step in order to make refinements to the systematized definition based on information

obtained in the second or third step of the process.

Often in political science, even a well-defined concept cannot be directly observed in

the real world. In the second step, the researcher must therefore begin to identify how the

latent trait relates to observable information, thereby creating a data generating process

from the latent trait to the observed indicators. A researcher interested in democracy might,

for example, identify whether a country holds competitive elections, whether there is a

representative legislature with the ability to effectively pass legislation, and whether there has

4We build on ideas covered in Adcock and Collier (2001) and elsewhere (e.g., Jackman

2008; Shadish 2010; Shadish, Cook and Campbell 2001).
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been alternation in power among competing political groups. Thus, this second step involves

the critical task of designing the data generating procedures used to collect information that

relates to the underlying concept of interest for the objects under study.

Once the data generating procedures are defined, the researcher proceeds to the third

step, which involves collecting observational information about a set of objects and the

categorization or scoring of those objects. This process maps the observed information

collected about the objects in the second step back to the concept of interest defined in the

first step through a defined categorization or scoring procedure. The definitional rules of

the operational procedure should be consistent with the conceptual definition defined in the

first step. The creation and use of any operational protocol requires that researchers make

decisions about how to weight each piece of information, and how they individually or jointly

inform the researcher’s beliefs about an object’s score for the underlying trait.

In sum, the three steps are (1) define theoretical concept and scope, (2) identify how

observational data connects to the theoretical concept by defining the data generating pro-

cess, (3) use the operational procedure to categorize or score cases, which are the subjects

or units of study. Most of our discussion from here focuses on the second and third steps.

This procedure highlights the fact that all measurement inherently involves the creation

of a measurement model, which is the second step of the measurement process, but with

links to both the first and third steps. Like all other models in social science, those used in

measurement require careful validation about the relationships between steps.

At the broadest level, measurement validation centers upon what is known as construct

validity, which is an assessment of both the theoretical content of the operationalization

protocol and the empirical content that is believed to be captured by this construct (e.g.,

Adcock and Collier 2001; Jackman 2008; Shadish 2010; Shadish, Cook and Campbell 2001).

Construct validity encompass a variety of different ways to evaluate a measure and opera-

tionalization.

Two important parts of construct validity are translation validity and measurement va-
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lidity. Translation validity is an evaluation of the match between the theoretical construct

and the proposed data generating procedure, which generates the observed pieces of informa-

tion. Measurement validity is an evaluation of the fit between the proposed data generating

procedure and the actual data obtained from it.

Translation errors occur when the operational protocol does not match the theory of

the concept. Measurement errors occur when the fit between representation of the data

generating procedure (the measurement model) and the data is poor. As researchers validate

their measures along these two related criteria, they may choose to (1) update the types of

information to collect, (2) modify the method for linking this information into scores on

the latent trait, or (3) modify the theoretical concept that the data generating procedure is

derived from. The measurement process is an inherently iterative process between each of

the three steps outlined above. Thus, to generate good estimates of a theoretical concept of

interest, the research must understand the relationship between each part of the measurement

process.

3 Measurement Modeling Assumptions

All measurement models, regardless of their complexity, require assumptions about the un-

derlying trait. In this section we provide an overview of these assumptions for some of the

measurement models that are most commonly used in the social sciences (additive scales and

IRT models). We begin by discussing the assumptions of additive scales and then proceed to

identification assumptions of latent variable models, and finally provide an overview of latent

variable model assumptions about dynamics and their relationship to local independence.

Before proceeding, it is useful to provide a brief overview of the notation we will use in

the following section. We denote the latent trait as θ, which is observed across units indexed

with i, which takes on values of 1, 2, ..., N , where N is the total number of units in the

sample. We observe θ indirectly through observable pieces of information often referred to

as “items” or “manifest indicators,” each of which is indexed using k with values 1, 2, ..., K,
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where K is the total number of manifest indicators. The realized values that these indicators

are y, with Y acting as the manifest indicator yet to be observed. This notation lets us refer

empirically to both the potential observed realization of data Y and the actual realization

of data y. Formally, we let Yik denote the score of subject i on item k, a random variable

with realization yik = {0, 1}. For simplicity, we assume that each indicator is binary. In

the next section, we will continue to build towards an additive scale as a latent variable

representation of a concept. We also discuss the assumptions underlying this model and the

standard unidimensional item response theory models we review later in the chapters.

3.1 Assumptions of Additive Scale Measurement Models

To make the notation and formalizations presented in this section more clear, we introduce

a small deterministic example that illustrates the relationships between the different model

parameters and data. As we mentioned above, we let k take on integer values from 1, 2, 3,

which represents three distinct questions of varying ability that we will ask of five hypo-

thetical subjects. These are the items which generate responses (i.e., the item responses)

from each subject. We first introduce a new parameter αk which represents a feature of the

items. In a testing setting, αk parameters represent the difficulty of a particular question as

it relates to the ability of the test-takers or subjects, which is represented by θ. In additive

scales it is assumed that if the latent trait for unit i is greater than αk then we will observe

yi = 1. More generally, αk accounts for the variation in how high (or low) a unit has to be

on the latent trait to achieve a positive outcome for indicator yk. For this example, we are

supposing that we know the true values of this parameter in our measurement model. Later

on, we will estimate these parameters.

In our example we consider the following latent traits for 5 units (θ1 = −2, θ2 = −1, θ3 =

0, θ4 = 1, θ5 = 2) and 3 items (α1 = 1.5, α2 = 0, α3 = 1.5), which are all arrayed along

the same unidimensional line. The relationship between the 5 units and the 3 items are

displayed visually in Figure 1. The unidimensional line represents values of the unobservable
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theoretical concept of interest but the substantive meaning of the entities along the line differ

because some are subjects and the others are the data generating objects (i.e. the item or

test questions).

Figure 1: Latent Variables and Item Parameters

θ1 θ2 θ3 θ4 θ5

-3 -2 -1 0 1 2 3

α1 α2 α3

item difficulty parameters

subject latent traits

Note: This plot displays latent traits for 5 units (θ1 = −2, θ2 = −1, θ3 = 0, θ4 = 1, θ5 = 2)
and 3 items (α1 = 1.5, α2 = 0, α3 = 1.5) all arrayed along the same unidimensional line. The
unidimensional line represents values of the unobservable theoretical concept of interest but the
substantive meaning of the entities along the line differ because some are subjects and others are
the data generating indicators (i.e., the item responses generated by the subjects). The subjects
and items are comparable in this space however. In particular, the comparison of the distance
between subject and object determines the observed binary item-responses for each subject-object
pairing.

The relationships displayed visually in Figure 1 are unobserved. What we actually ob-

served are binary responses (e.g., the answers to questions generated by subjects or the

categorical values created to compare country-year units). Our measurement goal is to cre-

ate a test or categorization scheme that relates the observed data back to the unobserved

latent traits. This is done by assuming a data generating process from the latent trait

to the indicators. Here we will use a deterministic function for the relationship between

each subject-item pairing, which is displayed in Equation 1. Later on we will introduce a

probability model for accomplishing this task.

yik =


1 if θi > αk

0 if θi ≤ αk

(1)
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Equation 1 represents the data generating function for the binary item responses produced

for each subject-item pair. For the illustrative example,

y+i =
K∑
k

(yik) (2)

Equation 2 represents the observed additive scale value for each subject i, which is de-

termined by the value of the logical proposition in equation 1. Table 1 presents the additive

scale values for y+i based on the pairwise comparisons between the 5 subjects and the 3

items. The additive scale is a deterministic, continuous scale, which satisfies the conditions

outlined by Guttman (e.g., Guttman 1949; van Schuur 2003). In words, the first subjects

ability is always less than the value of the item. To reiterate, the values are substantively

distinct but are comparable together on the same latent scale.

Table 1: Example of Additive Scale Function
latent trait items additive scale

θi α1 = −1.5 α2 = 0 α3 = 1.5 y+i
θ1 = −2 θ1 ≤ α1 ⇒ +0 θ1 ≤ α2 ⇒ +0 θ1 ≤ α2 ⇒ +0 y+1 = 0
θ2 = −1 θ2 > α1 ⇒ +1 θ2 ≤ α2 ⇒ +0 θ2 ≤ α3 ⇒ +0 y+2 = 1
θ3 = 0 θ3 > α1 ⇒ +1 θ3 ≤ α2 ⇒ +0 θ3 ≤ α3 ⇒ +0 y+3 = 1
θ4 = 1 θ4 > α1 ⇒ +1 θ4 > α2 ⇒ +1 θ4 ≤ α3 ⇒ +0 y+4 = 2
θ5 = 2 θ5 > α1 ⇒ +1 θ5 > α2 ⇒ +1 θ5 > α3 ⇒ +1 y+5 = 3

Table 1: The additive scale values are based on the status of the logical propositions for each
subject-item comparison.

The additive scale can also be rewritten as a function of just the values of the latent

trait and the difficulties. This is the function in Equation 3. Where the additive value is

found by checking the latent traits value against the ordered alphas. This emphasizes that in

additive scales there is an assumption that all items can be ordered in such a way that they

are monotonically increasing in difficulty. Once ordered, a researcher can identify where a

unit is on the additive scale based on when its indicators switch from 1 to 0.
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y+i =



3 if θi > α3

2 if θi > α2 and θi ≤ α3

1 if θi > α1 and θi ≤ α2

0 if θi ≤ α1

(3)

We can visually represent the relationship between the values of the additive scale, the

latent trait, and the items in Equation 3. We do this in Figure 2.

Figure 2: Example of Additive Scale Function

θ1

θ2 θ3

θ4

θ5

-3 -2 -1 0 1 2 3

0

1

2

3
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subject latent traits

Note: This plot displays latent traits for 5 units (θ1 = −2, θ2 = −1, θ3 = 0, θ4 = 1, θ5 = 2) and
3 items (α1 = 1.5, α2 = 0, α3 = 1.5) all arrayed along the same unidimensional line displayed in
Figure 1. The additive scale values on the y-axis are based on the status of the logical propositions
for each subject-item comparison in Table 1.

Up until now, we have assumed a deterministic model between the observed items and

the latent trait, which are consistent with the assumptions from Guttman (1949). In later

measurement research, Mokken (1971) developed a stochastic version under the assumptions

of a unidimensional latent variable, latent monotonicity, and local independence. Under
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these assumptions, the proportion of “correct” answers by subject i to item k is nonde-

creasing in the sum of all the items. These assumptions also imply that all of the items

are positively correlated across all subsets of subjects (Mokken 1971). Under these assump-

tions the unweighted sum of the variables increase as θ increases. Mokken Scaling Analysis

(MSA) is simply a stochastic version of a Guttman scale, in which items measure a single

latent construct and can be ordered by difficulty (Guttman 1949) but are not assumed to be

generated without error (van Schuur 2003).

The assumptions made by Mokken (1971) are common across many latent variable models

and so are worth exploring in more depth. The first assumption is that θ is a unidimensional

latent variable, which means that the values of the latent trait reside on a single axis. This

assumption can be tested using parameters from the Mokken Scaling Analysis (MSA) model

(van Schuur 2003). If this assumption fails, it means that the the latent trait cannot be

collapsed into a single dimension but that units can be high in one dimension and low on

another.

The second assumption is of latent monotonicity, which means that the item step response

function is strictly increasing on θ; θ1 ≤ θ2 ⇒ P (Yik ≥ yik|θ1) ≤ P (Yik ≥ yik|θ2). This implies

that as a unit increase in the latent variable, the probability of observing a positive indicator

also increases.

The third assumption is of local independence, which means that the item responses are

not deterministically related to each other outside of their relationship to the latent trait.

This implies that the probability of the set of each subject’s item responses is P (Yi1 =

yi1, Yi2 = yi2 · · ·YiK = xiK |θi) =
K∏
k=1

P (Yik = yik|θi) (van Schuur 2003). The only relationship

between items is through their relationship with the latent variable. This can be violated

in the testing environment when getting one answer correct depends on getting previous

answers correct.

To summarize, additive scaling is a data generating procedure that maps the latent trait

to an additive index. In order to estimate a stochastic additive scale, researchers must make
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assumptions about unidimensionality, monotonicity and local independence. As we discuss

next, these assumptions are also present in more complicated latent variable models which

also allow more variation in how the latent trait relates to the observed indicators.

3.2 Identification Assumptions of Latent Variable Models

We now move to estimate θ itself because, up until this point, this parameters has been

entirely conceptual. We do this through the Item Response Theory (IRT) framework which

allows us to estimate θ as well as other parameters in the data generating process. In

addition, using this framework we can add an additional layer of complexity of cross-section

time-series data, (i.e., country-year units) instead of the 5 hypothetical subjects from before.

In principal, IRT models are rooted in the same assumptions as the additive scale above.

That is, we assume that θ is a unidimensional latent variable, that its relationship with its

associated items is characterized by latent monotonicity, and local independence.

Under the IRT framework, the latent trait is θi where the subscript i = 1, . . . , N indicates

multiple units. yik is the observed value for item k for unit i. For each item αk and βk are also

estimated. αk continues to act as “difficulty” parameters, or a threshold that benchmarks

how likely an indicator is to be observed relative to the values of the latent trait. In our

formulation, this is analogous to an intercept in a traditional logistic regression model. βk,

often referred to as the “discrimination” parameters and is the analogue of a slope coefficient.

The relationship between θi and our indicator yik is:

P(yik = 1) = Λ(αk − βkθi) (4)

where Λ is the logistic function. Unlike for the additive scale, this is necessarily proba-

bilistic.5 The likelihood function encompassing the latent trait, realizations of the manifest

indicators, and item-specific parameters take the following form:

5The additive scale can be seen as a result of rewriting this to βk(θi − αk) and fixing

β =∞. This creates the step function that can be seen in Figure 2.
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L =
N∏
i=1

K∏
k=1

Λ(αk − βkθi)yik
(
1− Λ(αk − βkθi)

)1−yik
The model estimates the placement of one unit relative to all the other units based on the

values of the observed items. Without additional information such models are not identified,

which means that estimation is not possible because multiple sets of values for the parameter

estimates will fit the data equally well. There are generally three types of identification

problems that most applied researchers will encounter: additive, scale, and rotational. In

each of these cases the likelihood is invariant across multiple parameter estimates. To prevent

this situation, the researcher have to make several benign assumptions that provide additional

information to the model and prevent invariance.

The issues of scale and additive invariance are often the easiest to solve. In the case of

additive invariance, θ+ δ and α− δ lead to equivalent likelihood for any δ. Scale invariance

is similar except is a result of multiplication: δ · θ and θ
δ

would again produce equivalent

likelihoods. This invariance is commonly solved by providing information to θ through a

standard normal distribution as the prior. This is useful as it leads to estimates of θ that

are mean 0 with a standard deviation of 1.

Rotational invariance can be more complicated. Rotational invariance is the result of

equivalent likelihoods that result when θ is multiplied by −1 or “flipped”. In the context of

a latent variable for ideology, estimates with negative numbers as conservative and positive

numbers as liberal are the same as when negative numbers or liberal and positive numbers

are conservative. Put differently, the model has no way of knowing whether to order the

units from liberal to conservative, or from conservative to liberal ideologies.6

6As the number of dimensions for the latent variable increases there is an increasing

number of invariant rotations. For 1 dimension there are only 2 equivalent estimates, with

2 dimensions that number increases to 8 (e.g., Jackman 2001).
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One simple strategy for resolving rotational invariance is to fix the values of the latent

trait for two or more units. In the political ideology example, this could be achieved by

assigning values of the latent trait for a very liberal and a very conservative individual.

An alternative strategy imposes assumptions about the relationship between the manifest

indicators and the latent trait through the discrimination parameters, βk. For example,

Fariss (2014) relies on a series of indicators believed to positively correlate with respect

for human rights, and therefore restricts the β parameters to take on positive values. In

practice, this can be done through the use of truncated distributions (e.g. half-normal) or

strictly positive distributions (e.g., gamma).

As a demonstration of issues of invariance, consider the simple single dimensional model

for 5 units. We plot these 5 units along a single dimension in Figure 3. The first row shows

the baseline placing all 5 units in order. The second row shows a rightward shift of all 5 units

(additive invariance). Since the latent dimension is arbitrary, this move does not matter as

long as all units move in a similar way and there are no assumptions made about where the

center of the latent space is.

In row 3 we demonstrate the issue of scale invariance. Here, the latent trait has been

multiplied by 2, expanding the latent scale. Again, because each unit moves equally the end

result is no different from the initial placement in row 1 if there is no constraint placed on

the scale of the latent trait. Finally, row 4 shows rotational invariance. The latent traits

have been reversed so that θ1 moves from 2 to -2. This is equivalent to the first row if there

is no constraint placed on the direction of the scale.

In our running examples, we place normal priors on the latent trait and resolve the issues

of location and scale invariance.7 To resolve rotational invariance, we constrain βk to be

greater than zero, such that increasing values of each manifest indicator are associated with

increasing values of the latent trait. Finally, we place weakly-informative normal priors on

7In the following section we will continue to leverage the normal prior for identification

constraints, but we will introduce modifications to accommodate temporal dynamics.
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Figure 3: Identification Issues in Latent Variables

θ

Standard Normal Prior Distribution

θ1 θ2 θ3 θ4 θ5
-5 -4 -3 -2 -1 0 1 2 3 4 5

θ
+
δ

Additive Invariance

θ1 θ2 θ3 θ4 θ5
-5 -4 -3 -2 -1 0 1 2 3 4 5

δ
×
θ

Scale Invariance

θ1 θ2 θ3 θ4 θ5
-5 -4 -3 -2 -1 0 1 2 3 4 5

−
1
×
θ

Rotational Invariance

θ5 θ4 θ3 θ2 θ1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Note: This plot displays latent traits from four idealized models. The top row displays the 5 units
scaled so that the mean value is 0. The other rows show the consequence of the values of the latent
trait when adding a constant (row 2), multiplying a constant (row 3), and multiplying by -1 (row
4). These models each provide the same values for comparisons of the value of one unit relative to
any other or to the mean value of all of the units. Since we do not know the true absolute value of
the concept we wish to make inferences about, it is useful to constrain the values of the latent trait
to occupy the standard normal density function. By constraining the model in this way, we ensure
that we are not mixing and therefore comparing values from other the other models represented in
this visualization.

the difficulty parameters. The prior assignments can therefore be expressed as:

θit ∼ N(0, 1) ∀i = 1, . . . , N

βk ∼ HN(0, 3)

αk ∼ N(0, 3)

where HN is the half-normal distribution, with support on [0,∞).
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3.3 Local Independence and Assumptions about Dynamics

The model described above can be expanded to include units over multiple time periods.

In the above equations, this is accommodated by replacing θi with θit where t indexes time

periods from 1, . . . , T . There is no requirement that all units must be observed over all time

periods.

This does lead to some methodological questions. Latent variable models, including sim-

ple additive and cumulative scales, are built on the assumption that each observed variable

for a unit is generated independently of the other observed pieces of information about that

unit. This is the assumption of local independence. For the type of cross-sectional time-series

data that we consider in this chapter, the assumption of local independence means that any

two observed variables are only related because of the fact that they are each an observable

outcome of the same latent variable.

There are three relevant local independence assumptions: (1) local independence of dif-

ferent indicators within the same country-year, (2) local independence of indicators across

countries within years, and (3) local independence of indicators across years within countries.

Priors are a useful and common means of addressing potential violations of the latter-most

type of local independence violations. Applied researchers in International Relations are

likely to encounter problems where they are attempting to estimate a measure of multiple

units observed over time. The dependencies within a unit across time can be modeled as

part of the prior on the latent variable. In this section we discuss three broad approaches in

the field. Two of these are relatively common, while the last has been recently introduced.

In each case we discuss the assumptions that the model makes, the benefits of it, and the

costs.

3.3.1 Static Model

The three modeling strategies we present are differentiated by the prior information assigned

to the latent variable. We start here with the simplest model, the static model. The static
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model places a standard normal prior on all units for all time periods:

Static Model Prior

θit ∼ N(0, 1) ∀i = 1, . . . , N & ∀t = 1, . . . , T

The standard normal prior, as discussed above, prevents additive and scale invariance.

Estimates for the latent trait for each unit in each time period are differentiated exclusively

by the values of the indicators for that unit at that time period. This model is treats each

unit-time-period as independent which is a bold assumption to be made in most applied

research. In addition, this limits the information that is being used to estimate the latent

trait and so is likely to increase credible intervals. In the case where the indicator vari-

ables contain sufficient information on the latent trait, this modeling strategy may not be

problematic. Unfortunately, this is seldom the case when using social science data, where

indicators are often coarse or missing. As a result, these indicators often do not contain

sufficient information to differentiate between theoretically distinct units. The benefit to

this approach is that it does not force any atheoretical ‘memory’ on the latent trait allowing

sudden changes in the latent trait across time-periods.

3.3.2 Standard Dynamic Model

To address temporal non-independence in the data, many researchers have used a dynamic

prior for the latent trait, where the latent trait for unit i in time t is related directly to

the latent trait for unit i at time t − 1 (Martin and Quinn 2002; Schnakenberg and Fariss

2014; Fariss 2014; Caughey and Warshaw 2015; Kōnig, Marbach and Osnabrügge 2013). The

choice of a “random walk” prior on the latent variable is particularly common.

The random walk approach begins with the use of a standard normal prior on the latent

trait in the first observation period for every unit. Then for each subsequent time period, the

prior is normally distributed with mean θi(t−1), and a standard deviation σ which is either
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assigned by the researcher or, more commonly, estimated from the data.8 Here, we assign

a weakly informative prior to σ by using a half normal distribution with standard deviation

of 3 and mean 0.

Standard Dynamic Model Priors

θi1 ∼ N(0, 1) ∀i = 1, . . . , N

θit ∼ N(θi(t−1), σ) ∀i = 1, . . . , N & ∀t = 2, . . . , T

σ ∼ HN(0, 3)

This strategy trades the assumption that observations are independent with the assump-

tion that the latent trait will be correlated over time and will follow a random-walk. As a

result, estimates from dynamic models typically have less uncertainty because more informa-

tion is used to estimate each latent variable. This also induces smoothing over time because

changes between time periods are constrained. When researchers have theoretical reasons to

expect that the latent trait is relatively slow-moving over time, both modeling features can

be desirable. If, however, the latent trait is subject to rapid fluctuations or state-changes

between time periods, this temporal smoothing can produce biased estimates. The modeling

strategy we introduce below is designed to address this problem while still accounting for

temporal dynamics.

3.3.3 Robust Dynamic Modeling

We recently proposed an alternative strategy that drew on the robust modeling literature to

implement a robust version of the dynamic modeling (Reuning, Kenwick and Fariss 2019).

In the Bayesian framework, robust models alternate normal distributions with the Student’s

t-distribution to account for outliers (Gelman et al. 2014; Lange and Sinsheimer 1993; Lange,

Little and Taylor 1989; Geweke 1993; Fonseca, Ferreira and Migon 2008). In the context of

8The σ parameter is sometimes referred to as the innovation parameter
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dynamic latent variables, potential outliers are the “shocks” where values of the true latent

variable change suddenly within a unit’s time series.

The robust dynamic model continues to use a standard normal distribution for the first

observation in a unit’s time series.9 In subsequent years, the prior follows a Student’s t-

distribution with four degrees of freedom. Setting the degrees of freedom to a relatively low

value increases the density of the tails of the distribution which allows “extreme values” to

be estimated from time period to time period. Thus, the model smooths estimates across

time during periods of stability, but also allows for rapid changes in the latent trait during

periods of volatility. It is possible to estimate the degrees of freedom, but this can lead to

identification problems, which we explore in more detail in the appendix to Reuning, Ken-

wick and Fariss (2019). Setting a low degree of freedom of 4 has been recommended in other

contexts (Gelman et al. 2014) and so we believe that it will be useful in most latent variable

cases.

Robust Dynamic Model Priors

θi1 ∼ N(0, 1) ∀i = 1, . . . , N

θit ∼ T4(θi(t−1), σ) ∀i = 1, . . . , N & ∀t = 2, . . . , T

σ ∼ HN(0, 3)

9In practice, one can also substitute a Student’s t-distribution with a very high degrees

of freedom (e.g. 1,000), which closely approximates the normal distribution.
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4 Extensions of Latent Variable Models and Sugges-

tions for Future Research

In this final section, we highlight different fruitful paths for research using latent variable

models. In section 4.1, we discuss new ways that theory has informed particular model-

ing strategies and how this can provide new insights. In section 4.2, we present Multi-

Rater/Aldrich-McKelvey Scaling models, which allow researchers to use latent variable mod-

els to reduce the impact of rater preferences when trying to develop uniform scales from

expert surveys. In section 4.3, we introduce Multiple-Indicators Multiple-Causes models.

These models are relatively common in psychology but are rarely used in published political

science research even though they provide a principled way test what drives change in a la-

tent variable. In section 4.4, we discuss problems with different model fit statistics. Finally,

in section 4.5, we close with a set of best-practices useful for guiding future research.

4.1 The Seriousness With Which One Must Take Time

The modeling structures outlined above identify only a few ways in which researchers may

care to model temporal dynamics. In practice, researchers are beginning to identify a variety

of new strategies to address different forms of temporal non-independence. At times, for

example, researchers have reason to suspect the relationship between a manifest indicator

and the latent trait may change over time. Kenwick (2018), for example, is interested in

civilian control of regime institutions and argues that the strength of this control increases

over time, where civilian control is expected to be higher in a state where civilians have ruled

for several decades than it is in one that had previously experienced a military takeover. He

therefore structures the prior distribution on the latent trait for civilian regimes as a random

walk with drift, allowing the values of the latent trait to systematically increase (or decrease)

over time. Fariss (2014) faces a different type of temporal non-independence in the study

of human rights violations, and argues that the standards with which human rights reports

20



are written has changed over time. To accommodate these potential biases, Fariss (2018b)

allows the item discrimination parameters linking standards based indicators to latent trait

to vary over time to mitigate temporal biases.

In each case, the specific modeling structure used to generate estimates of the latent trait

was informed by prior theory and the results are empirically validated against competing

models. These examples demonstrate how the choice of modeling structure can fundamen-

tally alter the estimates of the latent trait itself, and the theoretical inferences one draws

from the measurement analysis. These insights are often non-trivial and must be treated

with the same care as other forms of hypothesis testing are conducted. Nevertheless, these

examples demonstrate how the proliferation of dynamic variable modeling techniques offer

fertile new testing grounds for the theoretical evaluation of concepts of interest.

4.2 Models of other unit dependences: Multi-Rater/Aldrich-McKelvey

Scaling

Latent variable approaches can also be useful in the context of expert and non-expert survey

when there is concern over how individuals will respond to survey items. This question was

first approached in research on surveys of voters in the United States (Aldrich and McKelvey

1977; Hare et al. 2015), but has also recently been used in the context of expert surveys to

quantify country level attributes (Marquardt and Pemstein 2018). The benefits of these

approaches, which we will refer to as multi-rater IRT here, is that using them researchers

can place answers from survey participants that might view underlying concepts on different

scales onto a single scale.

As an example, take the work of (Marquardt and Pemstein 2018), in which the authors

use a multi-rater model to place expert surveys about democratic practices within a country

on a single scale. They start with a survey of experts asking them to rate several countries

on a variety of democratic attributes. The problem with using these ratings directly is that

different experts might have different opinions about how democratic a country must be to
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be considered the most democratic and may also vary in their general understanding of the

question. This is a form of differential item functioning where the relationship between an

item (a response to a particular survey question) and the latent trait varies.

To account for differential item functioning the β (discrimination) and α (difficulty)

parameter are estimated for each survey participant but held constant across the countries

that they rated. For example if Yic is expert i’s response to a question on country c then it

would be estimated as a function of αi + βiθc.

This technique is fruitful not only in the context of expert surveys but also for non-

expert surveys where there are varying perceptions. Hare et al. (2015) uses this to identify

ideological placement of US Senators from a survey of voters. The multi-rater method

accounts for the fact that more liberal voters are likely to see the same Senator as being

more conservative than a moderate voter.

Nevertheless, in order for measures to be made comparable, there has to be a degree of

overlap in the units that survey participants rate. This returns to the problem of bridging

discussed above. Without overlap, the latent estimates will not be comparable across units.

Overlap allows us to identify the degree of differential item functioning and so provide es-

timates of latent variables that are comparable when there is significant differential item

functioning.

4.3 Adding even more structure: MIMIC Models

The final extension we consider is less focused on particular latent models and more on the

use of estimates from the latent models. Latent models produce estimates of the latent

traits that include error. The error needs to be apart of any future models that use the

latent variable. When the latent variable estimates are used as an independent variable,

estimation that incorporates error can be achieved relatively easily. All that is necessary is

to take N draws from the posterior of the latent variable, estimate N models that use the

latent variable as an IV and then combine those estimates using the same process that is
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used to combine multiple imputations. 10

Estimating models where the latent variable is the dependent variable requires more

care, but there are methods that are commonly used outside of political science that can

accomplish this goal. Multiple-Indicator Multiple-Causes (MIMIC) models were developed

starting in the 1970s to allow researchers to use multiple measures of a trait when estimating

the impacts of exogenous variables on that trait (Joreskog and Goldberger 1975; Muthén

1989). The MIMIC model approach is commonly employed in psychology (Krishnakumar

and Nagar 2008) and has been recently introduced to political science in the context of

political psychology (Pérez 2011).

In brief, MIMIC models include covariates for the latent variable that is being estimated.

These covariates are included in the initial estimation process and so capture the error that

is inherent in measuring a latent variable. Covariates are included by modeling θ directly as

a function of the covariates instead of just setting a simple prior on it.11

In addition to providing better estimates of the covariates on the underlying latent trait,

MIMIC models can be modified to identify differential item functioning that is correlated

with one of the covariates (Pérez 2011).

One caveat for MIMIC models is that we are unaware of anyone who has connected the

MIMIC approach to the dynamic latent variable approaches discussed here. Both approaches

involve modifying the modeling of the latent variable (either through an informative prior

or a regression setup) and so connecting the two will require additional work.

10Mislevy (1991), Bolck, Croon and Hagenaars (2004), and Schnakenberg and Fariss (2014)

each provide arguments and detailed suggestions on how to incorporate the uncertainty from

latent variable estimate using the multiple imputation equation formula from Rubin (1987).

11For more detailed discussion of estimations of MIMIC models see Fahrmeir and Raach

(2007).
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4.4 Assessing model fit: WAIC for Hierarchical and IRT Models

WAIC (the Watanabe-Akaike or widely applicable information criterion) is currently one

of the more preferred model diagnostics for Bayesian models (e.g., Gelman et al. 2014).

However, several open research questions remain under-explored when using WAIC with

hierarchical or IRT models.

WAIC is an approximation of leave-one-out validation, but approximating leave-one-out

validation leads to a problem in IRT data over what ought to be “left out” when validating

models. That is, should individual items be left-out for all unit-time periods, for units from a

panel, or all unit-years? Or should all the items be left out for one of these unit structures?

Newly published research extends WAIC in cases in which items are clustered within an

observation (Furr 2017) as well as other work incorporating time dynamics (Li et al. 2016).

Another recent area of work are diagnostics, and best practices for WAIC and other models

(Vehtari, Gelman and Gabry 2016).

When there is concern over the validity of WAIC statistics, it is useful to also estimate a

K-fold cross validation. This of course also requires removing a set of data and estimating

the model. We suggest that researchers randomly sample indicators to remove so that each

unit-time is still in the model. This allows estimates of latent traits for each unit-time and

those estimates can be used to calculate a held-out log-likelihood.

We suggest that while this area of research continues, researchers should provide multiple

checks of model fit. Posterior predictive checks are another very powerful way to test how

well an IRT model fits data. Overall, fit statistics, posterior predictive checks, and visual

analysis of the temporal patterns of well-known cases allow for the evaluation of competing

models without relying on a single statistical tool.

4.5 Best Practices for Applied Measurement Research

Finally, as researchers use these methodologies, we propose a few useful suggestions on how

to best approach modeling latent variables. It is our intention that these suggestions are

24



consistent with both the statistical modeling choices made when selecting the component

parts of latent variable model, as well as that these choices will be made with reference to

the two main types of construct validity also discussed. Recall that the process of measure-

ment occurs in three iterative stages: conceptualization of the sociological or physical system

being studied, operationalization of the data generating process that approximates the sys-

tem, and empirical analysis of the data. The specific terms we use for each of these three

stages is concept, construct, data. Construct validity is an overarching term for assessing the

relationship between one or more of the entities represented in each of these steps.12

• Validate by letting the theoretical concept drive the measurement speci-

fication: We have referred to this type of validation as translation validity and it

is concerned with the link between the theoretical concept and the operationalized

construct. It is not possible to consider a measure of an unobserved concept without

referencing a theoretical concept. For a construct to be valid, it needs to translate the

theoretical concept into an operational procedure that will generate data consistent

with the theory. Thus, the first step for any research on latent variables is to outline

the assumed relationships between the data generating process and the concept to be

measured. Will the data generating process produce indicators that reflect the under-

lying concept of interest? Are the proposed items manifest of the underlying concept?

Are the proposed items substitutes for each other? How are proposed items measured

over time? Does the measurement of these items vary?

• Validate by assessing the assumptions of the measurement model as they

12Two important parts of construct validity are translation validity and measurement va-

lidity. Translation validity is an evaluation of the match between the theoretical construct

and the proposed data generating procedure which generates the observed pieces of informa-

tion. Measurement validity is an evaluation of the fit between the proposed data generating

procedure and the actual data obtained from it.
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relate to theoretical concept of interest: This is also a suggestions about trans-

lation validity. How does the specification of the measurement model translate the

theoretical concept into the operational procedure that generates the observed data?

Every measurement model has underlying assumptions and it is important that any

empirical patterns are the result of the underlying data and not of the assumptions.

In the case of latent measurement models, researchers must pay close attention to any

parameters that are set without reference to theory of their concept of interest.

• Validate the fit of the measurement model as it relates to the observed

data: How does the model of the data generating process, the latent variable, fit the

observed data? This is an assessment of measurement validity. Measurement validity is

an evaluation of the fit between the proposed data generating procedure and the actual

data obtained from it. WAIC (the Watanabe-Akaike or widely applicable information

criterion) and other statistical tools are useful ways to test model fit, but researchers

should not just select a model based on a single statistical tool. One useful way to test

competing models is to focus on divergent estimates and use a prior knowledge about

the world to validate which one is the best.

There is no guarantee that any single modeling strategy will be equally well-suited for

use with all data types or for estimating all types of latent concepts. The assumptions

of the measurement model will influence the conclusions researchers draw both about the

underlying theoretical concept of interest, as well as the empirical linkages between these

concepts and other political phenomena.

5 Concluding Remarks

The assessment of theories about political institutions and behaviors often requires measuring

concepts that are not directly observable. Thus, for science to proceed, measurement is

essential, because without a clearly articulated link between the empirical content of a study

and the theoretical structure that gives rise to that content, it is not possible to make claims
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about the relationship between data and the world. Yet, despite the necessity for valid

measurement, research in the social sciences still often tends to ignore the construct validity

of most measures and usually takes existing data, especially experimental data, for granted

or at least as good enough. Thus, one of the critical steps in evaluating theoretical concepts

is the development, formalization, and validation of measurement models. This is because

there is no model-free way to measure unobservable or difficult to observe concepts. And,

many of the concepts of interest to the political science community are often by definition

difficult to observe. As we have discussed in this chapter, construct validity, and measurement

models in general and latent variable models in particular, are tools, which are useful for

systematically evaluating the relationship between concepts, operational procedures (e.g.,

the data generating process) and, data.
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