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Introduction

Measurement models in general, and latent 
variable models in particular, are now 
common in political science research. This is 
because political scientists are increasingly 
focused on improving the measurement of 
unobservable concepts and understanding the 
relationships and potential biases between 
different pieces of observable information 
and the measurement procedures that link this 
information to theoretical concepts. Recent 
methodological and computational advances 
have led to a flourishing of new latent varia-
ble modeling applications. These new tools 
provide researchers with a means of measur-
ing difficult to observe concepts based on 
events, ratings or other pieces of observable 
information that are assumed to be a result of 
the underlying unobservable latent trait.1

Latent variable models are built on the 
idea that observable variables are manifes-
tations of an underlying conceptual process 
that is not perfectly observable or knowable 

and includes increasingly computationally 
sophisticated probability models (e.g., Imai 
et  al., 2016; Jackman, 2000, 2001; Martin 
and Quinn, 2002; Plummer, 2017; Carpenter 
et  al., 2017) and computationally simply 
additive scales (e.g., Guttman, 1949; van 
Schuur, 2003). In this chapter, we review 
the scientific measurement process and the 
assumptions needed to construct models of 
unobservable theoretical concepts.

The scientific process of measurement 
occurs in three iterative stages: conceptual-
ization of the sociological or physical sys-
tem being studied, operationalization of the 
data generating process that approximates 
the system and empirical analysis of the data 
generated by that system. The relationship 
between each of these steps is assessed using 
construct validity tools.2 Because the meas-
urement process is iterative, it is incumbent 
on the researcher to (1) acknowledge the 
starting point of the measurement process 
and (2) provide an assessment of the quality 
of the links between these steps. We provide 
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more details about these recommendations 
throughout this chapter, although our focus 
here is on how latent variable models can be 
used to assess these steps.

Latent variable models allow for the empir-
ical assessment of how the different observed 
pieces of data relate to one another through 
their association with the estimated latent 
trait. Even computationally simple additive 
scales are models that represent an underly-
ing latent concept. Additive scales require the 
same process of assessment as more compu-
tationally difficult latent variable approaches 
(van Schuur, 2003). We discuss these additive 
scaling models as a starting point for think-
ing about estimating latent variable models 
more generally, because these models share 
the same set of assumptions. New computa-
tionally sophisticated latent variable models 
allow the researcher to relax these assump-
tions in conceptually meaningful ways.

The particular examples of latent variable 
models that we review in this chapter have 
been applied across a variety of subfields, 
encompassing the study of political ideology 
(Barbera, 2015; Bond and Messing, 2015; 
Martin and Quinn, 2002; Martin et al. 2005; 
Caughey and Warshaw, 2015; Kōnig et  al., 
2013; Pan and Xu, 2018; Treier and Hillygus, 
2009; Windett et  al., 2015), political atti-
tudes, knowledge and preferences (Blaydes 
and Linzer, 2008; Pérez, 2011; Jessee, 2017; 
Stegmueller, 2011, 2013), regime institu-
tions (Treier and Jackman, 2008; Pemstein 
et  al., 2010; Kenwick, 2018, Gandhi and 
Sumner, 2019), UN voting positions (Voeten, 
2000), human rights abuse (Schnakenberg 
and Fariss, 2014; Fariss, 2014, 2019; Fariss 
et al., 2020), human rights treaty embedded-
ness (Fariss, 2018b,a), judicial independence 
(Linzer and Staton, 2016), demographic vari-
ables (Anders et al., forthcoming), and insti-
tutional transparency (Hollyer et  al., 2014). 
We discuss several latent variable models 
that are capable of accommodating different 
forms of conceptual dependencies between 
units, in particular temporal interdepend-
ence in time-series cross-sectional data. 

We provide examples that build on insights 
from a recently published article on tempo-
ral dependence and sudden temporal changes 
in time-series cross-sectional data (Reuning 
et al., 2019).3

After discussing the measurement pro-
cess and construct validity in more detail 
and laying out different dynamics of latent 
variables, we highlight places that we believe 
are ripe for future research. In particular, we 
discuss new ways to theoretically include 
time in latent variable models, ways to scale 
expert surveys, the use of Multiple-Indicator-
Multiple-Causes models and issues with dif-
ferent model fit statistics. Finally, we end 
with a list of recommendations for the applied 
researcher using latent variable models.

The Measurement Process

The process of measurement can be broadly 
characterized as having three steps.4 The 
process of measurement allows the researcher 
to think explicitly about each of these three 
steps and the relationships between them 
because it links theories, the concept, with 
operational procedures, the construct, which 
generate observable information, the data. 
We discuss each of these steps here.

In the first step, a researcher generates a 
systematized definition of a concept in which 
they are interested. The systematized defini-
tion should be specific enough to have intel-
lectual traction, but sufficiently broad so that 
it can be meaningfully applied to a set of 
objects across time, space or both (Shadish, 
2010). What does this mean in practice? That 
there is necessarily a trade-off between speci-
ficity and generalizability and, when applied, 
the researcher must clarify the boundary con-
ditions that define the set of objects for which 
the measurement procedure operates and the 
set for which it does not. At the extreme, 
the conceptual process should cover more 
than one object, but less than all objects. 
Specifying these boundary conditions is part 
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of the conceptual step in the measurement 
process. However, because the measure-
ment process is iterative, the researcher can 
and should return to this first step in order 
to make refinements to the systematized defi-
nition based on information obtained in the 
second or third step of the process.

Often in political science, even a well-
defined concept cannot be directly observed 
in the real world. In the second step, the 
researcher must therefore begin to identify 
how the latent trait relates to observable infor-
mation, thereby creating a data generating 
process from the latent trait to the observed 
indicators. A researcher interested in democ-
racy might, e.g., identify whether a country 
holds competitive elections, whether there is 
a representative legislature with the ability to 
effectively pass legislation and whether there 
has been alternation in power among compet-
ing political groups. Thus, this second step 
involves the critical task of designing the data 
generating procedures used to collect infor-
mation that relates to the underlying concept 
of interest for the objects under study.

Once the data generating procedures are 
defined, the researcher proceeds to the third 
step, which involves collecting observational 
information about a set of objects and the 
categorization or scoring of those objects. 
This process maps the observed information 
collected about the objects in the second step 
back to the concept of interest defined in the 
first step through a defined categorization or 
scoring procedure. The definitional rules of 
the operational procedure should be consist-
ent with the conceptual definition defined 
in the first step. The creation and use of any 
operational protocol requires that research-
ers make decisions about how to weight each 
piece of information and how they individu-
ally or jointly inform the researcher’s beliefs 
about an object’s score for the underlying 
trait.

In sum, the three steps are: (1) define theo-
retical concept and scope; (2) identify how 
observational data connects to the theoreti-
cal concept by defining the data generating 

process; (3) use the operational procedure to 
categorize or score cases which are the sub-
jects or units of study. Most of our discus-
sion from here focuses on the second and 
third steps. This procedure highlights the fact 
that all measurement inherently involves the 
creation of a measurement model, which is 
the second step of the measurement process, 
but with links to both the first and third steps. 
Like all other models in social science, those 
used in measurement require careful valida-
tion about the relationships between steps.

At the broadest level, measurement valida-
tion centers upon what is known as construct 
validity, which is an assessment of both the 
theoretical content of the operationaliza-
tion protocol and the empirical content that 
is believed to be captured by this construct 
(e.g., Adcock and Collier, 2001; Jackman, 
2008; Shadish, 2010; Shadish et  al., 2001). 
Construct validity encompasses a variety 
of different ways to evaluate a measure and 
operationalization.

Two important parts of construct valid-
ity are translation validity and measurement 
validity. Translation validity is an evaluation 
of the match between the theoretical con-
struct and the proposed data generating pro-
cedure, which generates the observed pieces 
of information. Measurement validity is an 
evaluation of the fit between the proposed 
data generating procedure and the actual data 
obtained from it.

Translation errors occur when the opera-
tional protocol does not match the theory of 
the concept. Measurement errors occur when 
the fit between representation of the data gen-
erating procedure (the measurement model) 
and the data is poor. As researchers validate 
their measures along these two related crite-
ria, they may choose to (1) update the types of 
information to collect, (2) modify the method 
for linking this information into scores on 
the latent trait or (3) modify the theoretical 
concept that the data generating procedure 
is derived from. The measurement process 
is an inherently iterative process between 
each of the three steps outlined above.  
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Thus, to generate good estimates of a theo-
retical concept of interest, the research must 
understand the relationship between each 
part of the measurement process.

Measurement Modeling 
Assumptions

All measurement models, regardless of their 
complexity, require assumptions about the 
underlying trait. In this section we provide an 
overview of these assumptions for some of 
the measurement models that are most com-
monly used in the social sciences (additive 
scales and IRT models). We begin by dis-
cussing the assumptions of additive scales, 
proceed to identify assumptions of latent 
variable models and finally provide an over-
view of latent variable model assumptions 
about dynamics and their relationship to 
local independence.

Before proceeding, it is useful to provide 
a brief overview of the notation we will 
use in the following section. We denote the 
latent trait as θ, which is observed across 
units indexed with i, which takes on values 
of 1, 2, …, N, where N is the total number 
of units in the sample. We observe θ indi-
rectly through observable pieces of informa-
tion often referred to as ‘items’ or ‘manifest 
indicators’, each of which is indexed using k 
with values 1, 2, …, K, where K is the total 
number of manifest indicators. The realized 
values of these indicators are y, with Y acting as 
the manifest indicator yet to be observed. This 
notation lets us refer empirically to both the 
potential observed realization of data Y and the 
actual realization of data y. Formally, we let Yik 
denote the score of subject i on item k, a ran-
dom variable with realization yik = {0, 1}. For 
simplicity, we assume that each indicator is 
binary. In the next section, we will continue 
to build towards an additive scale as a latent 
variable representation of a concept. We 
also discuss the assumptions underlying this 
model and the standard unidimensional item 

response theory models which we review 
later in the chapter.

Assumptions of Additive Scale 
Measurement Models

To make the notation and formalizations 
presented in this section more clear, we 
introduce a small deterministic example 
that illustrates the relationships between the 
different model parameters and data. As we 
mentioned above, we let k take on integer 
values from 1, 2, 3, which represents three 
distinct questions of varying ability that we 
will ask of five hypothetical subjects. These 
are the items which generate responses (i.e., 
the item responses) from each subject. We 
first introduce a new parameter αk which 
represents a feature of the items. In a testing 
setting, αk parameters represent the diffi-
culty of a particular question as it relates to 
the ability of the test-takers or subjects, 
which is represented by θ. In additive scales 
it is assumed that if the latent trait for unit  
i is greater than αk then we will observe  
yi = 1. More generally, αk accounts for the 
variation in how high (or low) a unit has to 
be on the latent trait to achieve a positive 
outcome for indicator yk. For this example, 
we are supposing that we know the true 
values of this parameter in our measure-
ment model. Later on, we will estimate 
these parameters.

In our example we consider the following 
latent traits for five units (θ1 = −2, θ2 = −1,  
θ3 = 0, θ4 = 1, θ5 = 2) and three items (α1 = –1.5,  
α2 = 0, α3 = 1.5), which are all arrayed along 
the same unidimensional line. The relation-
ship between the five units and the three 
items are displayed visually in Figure 20.1. 
The unidimensional line represents val-
ues of the unobservable theoretical concept  
of interest but the substantive meaning of  
the entities along the line differ because 
some are subjects and the others are the 
data generating objects (i.e., the item or test 
questions).
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The relationships displayed visually in 
Figure 20.1 are unobserved. What we actu-
ally observed are binary responses (e.g., the 
answers to questions generated by subjects 
or the categorical values created to compare 
country-year units). Our measurement goal is 
to create a test or categorization scheme that 
relates the observed data back to the unob-
served latent traits. This is done by assuming 
a data generating process from the latent trait 
to the indicators. Here we will use a deter-
ministic function for the relationship between 
each subject–item pairing, which is displayed 

in Equation 1. Later on we will introduce a 
probability model for accomplishing this task.

	 y
1 if  

0 if  ik

i k

i k

θ α
θ α

=
>
≤






� (1)

Equation 1 represents the data generating 
function for the binary item responses pro-
duced for each subject–item pair. For the 
illustrative example,

	 y y( )i ik
k

K

∑=+ � (2)

Equation 2 represents the observed additive 
scale value for each subject i, which is deter-
mined by the value of the logical proposition 
in equation 1. Table 20.1 presents the addi-
tive scale values for yi

+  based on the pairwise 
comparisons between the five subjects and 
the three items. The additive scale is a deter-
ministic, continuous scale, which satisfies 
the conditions outlined by Guttman (e.g., 
Guttman, 1949; van Schuur, 2003). In words, 
the first subject’s ability is always less than 
the value of the item. To reiterate, the values 
are substantively distinct but are comparable 
together on the same latent scale.

The additive scale can also be rewritten as 
a function of just the values of the latent trait 
and the difficulties. This is the function in 
Equation 3, where the additive value is found 
by checking the latent trait’s value against 
the ordered alphas. This emphasizes that in 
additive scales there is an assumption that 
all items can be ordered in such a way that 

Figure 20.1 L atent variables and item 
parameters

Note: This plot displays latent traits for 5 units ( 2,
1

θ = −  
1, 0, 1, 2)

2 3 4 5
θ θ θ θ= − = = =  and 3 items ( 1.5, 0

1 2
α α= − =  

1.5)
3

α =  all arrayed along the same unidimensional line. 
The unidimensional line represents values of the unobserv-
able theoretical concept of interest but the substantive 
meaning of the entities along the line differ because some 
are subjects and others are the data generating indicators 
(i.e., the item responses generated by the subjects). The 
subjects and items are comparable in this space however. 
In particular, the comparison of the distance between 
subject and object determines the observed binary item 
responses for each subject–object pairing.

Table 20.1 E xample of additive scale function

Latent Trait Items Additive Scale

θi α1 = −1.5 α2 = 0 α3 = 1.5 +y
i

θ1 = −2 θ1 ≤ α1 ⇒ +0 θ1 ≤ α2 ⇒ +0 θ1 ≤ α2 ⇒ +0 y 0
1

=+

θ2 = −1 θ2 > α1 ⇒ +1 θ2 ≤ α2 ⇒ +0 θ2 ≤ α3 ⇒ +0 y 1
2

=+

θ3 = −0 θ3 > α1 ⇒ +1 θ3 ≤ α2 ⇒ +0 θ3 ≤ α3 ⇒ +0 y 1
3

=+

θ4 = 1 θ4 > α1 ⇒ +1 θ4 > α2 ⇒ +1 θ4 ≤ α3 ⇒ +0 y 2
4

=+

θ5 = 2 θ5 > α1 ⇒ +1 θ5 > α2 ⇒ +1 θ5 > α3 ⇒ +1 y 3
5

=+

Note: The additive scale values are based on the status of the logical propositions for each subject-item comparison.
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they are monotonically increasing in diffi-
culty. Once ordered, a researcher can identify 
where a unit is on the additive scale based on 
when its indicators switch from 1 to 0.

	

y

3 if  

2 if   and

1 if   and

0 if  

i
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i i

i i

i

3
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We can visually represent the relationship 
between the values of the additive scale, the 
latent trait, and the items in Equation 3. We 
do this in Figure 20.2.

Up until now, we have assumed a deter-
ministic model between the observed items 
and the latent trait, which are consistent 
with the assumptions from Guttman (1949). 
In later measurement research, Mokken 
(1971) developed a stochastic version under 
the assumptions of a unidimensional latent 
variable, latent monotonicity and local inde-
pendence. Under these assumptions, the 

proportion of ‘correct’ answers by subject i to 
item k is nondecreasing in the sum of all the 
items. These assumptions also imply that all 
of the items are positively correlated across 
all subsets of subjects (Mokken, 1971). 
Under these assumptions the unweighted 
sum of the variables increase as θ increases. 
Mokken Scaling Analysis (MSA) is simply 
a stochastic version of a Guttman scale, in 
which items measure a single latent construct 
and can be ordered by difficulty (Guttman, 
1949) but are not assumed to be generated 
without error (van Schuur, 2003).

The assumptions made by Mokken (1971) 
are common across many latent variable 
models and so are worth exploring in more 
depth. The first assumption is that θ is a uni-
dimensional latent variable, which means 
that the values of the latent trait reside on 
a single axis. This assumption can be tested 
using parameters from the Mokken Scaling 
Analysis (MSA) model (van Schuur, 2003). 
If this assumption fails, it means that the 
latent trait cannot be collapsed into a single 
dimension but that units can be high in one 
dimension and low on another.

The second assumption is of latent mono-
tonicity, which means that the item step 
response function is strictly increasing on  
θ; P Y y P Y y( | ) ( | ).ik ik ik ik1 2 1 2θ θ θ θ≤ ⇒ ≥ ≤ ≥  
This implies that as a unit increases in the 
latent variable, the probability of observing a 
positive indicator also increases.

The third assumption is of local independ-
ence, which means that the item responses 
are not deterministically related to each other 
outside of their relationship to the latent 
trait. This implies that the probability of 
the set of each subject’s item responses is  

θ= = =P Y y Y y Y y( , | )i i i i iK iK i1 1 2 2   

P Y y( | )
k

K

ik ik i
1

∏ θ= =
=

(van Schuur, 2003). The 

only relationship between items is through 
their relationship with the latent variable. This 
can be violated in the testing environment 
when getting one answer correct depends on 
getting previous answers correct.

Figure 20.2 E xample of additive scale  
function

Note: This plot displays latent traits for 5 units ( 2,
1

θ = −   
1, 0, 1, 2)

2 3 4 5
θ θ θ θ= − = = =  and 3 items ( 1.5, 0,

1 2
α α= =  

1.5
3

α = ) all arrayed along the same unidimensional line 
displayed in Figure 20.1. The additive scale values on the 
y-axis are based on the status of the logical propositions 
for each subject-item comparison in Table 20.1.
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To summarize, additive scaling is a data 
generating procedure that maps the latent 
trait to an additive index. In order to estimate 
a stochastic additive scale, researchers must 
make assumptions about unidimensionality, 
monotonicity and local independence. As 
we discuss next, these assumptions are also 
present in more complicated latent variable 
models which also allow more variation in 
how the latent trait relates to the observed 
indicators.

Identification Assumptions of 
Latent Variable Models

We now move to estimate θ itself because, up 
until this point, this parameter has been 
entirely conceptual. We do this through the 
Item Response Theory (IRT) framework 
which allows us to estimate θ as well as other 
parameters in the data generating process. In 
addition, using this framework we can add an 
additional layer of complexity of cross-
sectional time-series data (i.e., country-year 
units) instead of the five hypothetical sub-
jects from before.

In principal, IRT models are rooted in 
the same assumptions as the additive scale 
above; that is, we assume that θ is a uni-
dimensional latent variable and that its 
relationship with its associated items is 
characterized by latent monotonicity and 
local independence.

Under the IRT framework, the latent trait 
is θi where the subscript i = 1, …, N indi-
cates multiple units. yik is the observed value 
for item k for unit i. For each item αk and βk 
are also estimated. αk continues to act as a 
‘difficulty’ parameter, or a threshold that 
benchmarks how likely an indicator is to be 
observed relative to the values of the latent 
trait. In our formulation, this is analogous to 
an intercept in a traditional logistic regres-
sion model. βk is often referred to as the ‘dis-
crimination’ parameter and is the analogue of 
a slope coefficient.

The relationship between θi and our indi-
cator yik is:

	 yP( 1) ( )ik k k iα β θ= = Λ − � (4)

where Λ is the logistic function. Unlike in the 
case of the additive scale, this is necessarily 
probabilistic.5 The likelihood function 
encompassing the latent trait, realizations of 
the manifest indicators and item-specific 
parameters take the following form:

( )( ) 1 ( )
k

K

i

N

k k i
y

k k i
y

11

1ik ik ∏∏ α β θ α β θ= Λ − − Λ −
==

−

The model estimates the placement of one 
unit relative to all the other units based on 
the values of the observed items. Without 
additional information such models are not 
identified, which means that estimation is 
not possible because multiple sets of val-
ues for the parameter estimates will fit the 
data equally well. There are generally three 
types of identification problem that most 
applied researchers will encounter: addi-
tive, scale and rotational. In each of these 
cases the likelihood is invariant across mul-
tiple parameter estimates. To prevent this 
situation, the researcher must make sev-
eral benign assumptions that provide addi-
tional information to the model and prevent 
invariance.

The issues of scale and additive invariance 
are often the easiest to solve. In the case of 
additive invariance, θ + δ and α − δ lead to 
equivalent likelihood for any δ. Scale invari-
ance is similar except is a result of multi-

plication: δ · θ and 
θ
δ

 would again produce 

equivalent likelihoods. This invariance is com-
monly solved by providing information to θ 
through a standard normal distribution as the 
prior. This is useful as it leads to estimates of θ 
that are mean 0 with a standard deviation of 1.

Rotational invariance can be more compli-
cated. Rotational invariance is the result of 
equivalent likelihoods that result when θ is 
multiplied by –1 or ‘flipped’. In the context 
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of a latent variable for ideology, estimates 
with negative numbers as conservative and 
positive numbers as liberal are the same as 
when negative numbers or liberal and posi-
tive numbers are conservative. Put differently, 
the model has no way of knowing whether to 
order the units from liberal to conservative, 
or from conservative to liberal ideologies.6

One simple strategy for resolving rota-
tional invariance is to fix the values of the 
latent trait for two or more units. In the 
political ideology example, this could be 
achieved by assigning values of the latent 
trait for a very liberal and a very conservative 
individual. An alternative strategy imposes 
assumptions about the relationship between 

the manifest indicators and the latent trait 
through the discrimination parameters, βk. 
For example, Fariss (2014) relies on a series 
of indicators believed to positively correlate 
with respect for human rights, and therefore 
restricts the β parameters to take on positive 
values. In practice, this can be done through 
the use of truncated distributions (e.g., half-
normal) or strictly positive distributions (e.g., 
gamma).

As a demonstration of issues of invari-
ance, consider the simple single dimensional 
model for five units. We plot these five units 
along a single dimension in Figure 20.3. 
The first row shows the baseline, placing all 
five units in order. The second row shows 

Figure 20.3  Identification issues in latent variables

Note: This plot displays latent traits from four idealized models. The top row displays the 5 units scaled so that the mean 
value is 0. The other rows show the consequence of the values of the latent trait when adding a constant (row 2), multiply-
ing a constant (row 3), and multiplying by –1 (row 4). These models each provide the same values for comparisons of the 
value of one unit relative to any other or to the mean value of all of the units. Since we do not know the true absolute 
value of the concept we wish to make inferences about, it is useful to constrain the values of the latent trait to occupy the 
standard normal density function. By constraining the model in this way, we ensure that we are not mixing and therefore 
comparing values from the other models represented in this visualization.
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a rightward shift of all five units (additive 
invariance). Since the latent dimension is 
arbitrary, this move does not matter as long as 
all units move in a similar way and there are 
no assumptions made about where the center 
of the latent space is.

In row 3 we demonstrate the issue of scale 
invariance. Here, the latent trait has been 
multiplied by 2, expanding the latent scale. 
Again, because each unit moves equally the 
end result is no different from the initial 
placement in row 1 if there is no constraint 
placed on the scale of the latent trait. Finally, 
row 4 shows rotational invariance. The latent 
traits have been reversed so that θ1 moves 
from 2 to −2. This is equivalent to the first 
row if there is no constraint placed on the 
direction of the scale.

In our running examples, we place nor-
mal priors on the latent trait and resolve 
the issues of location and scale invariance.7  
To resolve rotational invariance, we constrain 
βk to be greater than zero, such that increasing 
values of each manifest indicator are associ-
ated with increasing values of the latent trait. 
Finally, we place weakly informative normal 
priors on the difficulty parameters. The prior 
assignments can therefore be expressed as:

i N~ N(0,1) 1, ,

~ HN(0,3)

~ N(0,3)

it

k

k

θ
β
α

∀ = …

where HN is the half-normal distribution, 
with support on [0, ∞).

Local Independence and 
Assumptions about Dynamics

The model described above can be expanded 
to include units over multiple time periods. 
In the above equations, this is accommodated 
by replacing θi with θit where t indexes time 
periods from 1, …, T. There is no require-
ment that all units must be observed over all 
time periods.

This does lead to some methodological 
questions. Latent variable models, including 
simple additive and cumulative scales, are 
built on the assumption that each observed 
variable for a unit is generated independently 
of the other observed pieces of information 
about that unit. This is the assumption of 
local independence. For the type of cross-
sectional time-series data that we consider 
in this chapter, the assumption of local inde-
pendence means that any two observed vari-
ables are only related because of the fact that 
they are each an observable outcome of the 
same latent variable.

There are three relevant local independence 
assumptions: (1) local independence of differ-
ent indicators within the same country-year; 
(2) local independence of indicators across 
countries within years; and (3) local independ-
ence of indicators across years within coun-
tries. Priors are a useful and common means 
of addressing potential violations of the lat-
termost type of local independence violations. 
Applied researchers in international relations 
are likely to encounter problems where they 
are attempting to estimate a measure of mul-
tiple units observed over time. The dependen-
cies within a unit across time can be modeled 
as part of the prior on the latent variable. In this 
section we discuss three broad approaches in 
the field. Two of these are relatively common, 
while the last has been recently introduced. In 
each case we discuss the assumptions that the 
model makes, the benefits of it and the costs.

Static model
The three modeling strategies we present are 
differentiated by the prior information 
assigned to the latent variable. We start here 
with the simplest model, the static model. 
The static model places a standard normal 
prior on all units for all time periods:

Static model prior

i N t T~ N(0,1) 1, , 1, ,itθ ∀ = … ∀ = …

The standard normal prior, as discussed 
above, prevents additive and scale invariance. 
Estimates for the latent trait for each unit in 
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each time period are differentiated exclusively 
by the values of the indicators for that unit at 
that time period. This model treats each unit-
time period as independent, which is a bold 
assumption to make in most applied research. 
In addition, this limits the information that 
is being used to estimate the latent trait and 
so is likely to increase credible intervals. In 
the case where the indicator variables contain 
sufficient information on the latent trait, this 
modeling strategy may not be problematic. 
Unfortunately, this is seldom the case when 
using social science data, where indicators are 
often coarse or missing. As a result, these indi-
cators often do not contain sufficient infor-
mation to differentiate between theoretically 
distinct units. The benefit to this approach 
is that it does not force any atheoretical 
‘memory’ on the latent trait allowing sudden 
changes in the latent trait across time-periods.

Standard dynamic model
To address temporal non-independence in the 
data, many researchers have used a dynamic 
prior for the latent trait, where the latent trait 
for unit i in time t is related directly to the 
latent trait for unit i at time t – 1 (Martin and 
Quinn, 2002; Schnakenberg and Fariss, 2014; 
Fariss, 2014; Caughey and Warshaw, 2015;  
Konig et al., 2013). The choice of a ‘random 
walk’ prior on the latent variable is particu-
larly common.

The random walk approach begins with 
the use of a standard normal prior on the 
latent trait in the first observation period for 
every unit. Then for each subsequent time 
period, the prior is normally distributed with 
mean θi(t−1), and a standard deviation σ which 
is either assigned by the researcher or, more 
commonly, estimated from the data.8 Here, 
we assign a weakly informative prior to σ by 
using a half-normal distribution with stand-
ard deviation of 3 and mean 0.

Standard dynamic model priors

i N

i N t T

~ N(0,1) 1, ,

~ N( , ) 1, , 2, ,

~ HN(0,3)

i

it i t

1

( 1)

θ
θ θ σ
σ

∀ = …
∀ = … ∀ = …−

This strategy trades the assumption that 
observations are independent with the 
assumption that the latent trait will be cor-
related over time and will follow a random 
walk. As a result, estimates from dynamic 
models typically have less uncertainty 
because more information is used to esti-
mate each latent variable. This also induces 
smoothing over time because changes 
between time periods are constrained. 
When researchers have theoretical reasons 
to expect that the latent trait is relatively 
slow-moving over time, both modeling fea-
tures can be desirable. If, however, the latent 
trait is subject to rapid fluctuations or state 
changes between time periods, this tempo-
ral smoothing can produce biased estimates. 
The modeling strategy we introduce below 
is designed to address this problem while 
still accounting for temporal dynamics.

Robust dynamic modeling
We recently proposed an alternative strategy 
that drew on the robust modeling literature 
to implement a robust version of the dynamic 
modeling (Reuning et  al., 2019). In the 
Bayesian framework, robust models alter-
nate normal distributions with the Student’s 
t-distribution to account for outliers (Gelman 
et  al., 2014; Lange and Sinsheimer, 1993; 
Lange et al., 1989; Geweke, 1993; Fonseca 
et  al., 2008). In the context of dynamic 
latent variables, potential outliers are the 
‘shocks’ where values of the true latent 
variable change suddenly within a unit’s 
time series.

The robust dynamic model continues to 
use a standard normal distribution for the first 
observation in a unit’s time series.9 In sub-
sequent years, the prior follows a Student’s 
t-distribution with four degrees of freedom. 
Setting the degrees of freedom to a relatively 
low value increases the density of the tails 
of the distribution, which allows ‘extreme 
values’ to be estimated from time period to 
time period. Thus, the model smooths esti-
mates across time during periods of stability, 
but also allows for rapid changes in the latent 
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trait during periods of volatility. It is possible 
to estimate the degrees of freedom, but this 
can lead to identification problems, which 
we explore in more detail in the appendix to 
Reuning et  al. (2019). Setting a low degree 
of freedom of 4 has been recommended in 
other contexts (Gelman et al., 2014) and so 
we believe that it will be useful in most latent 
variable cases.

Robust dynamic model priors

i N

i N t T

~ N(0,1) 1, ,

~ T ( , ) 1, , 2, ,

~ HN(0,3)

i

it i t

1

4 ( 1)

θ
θ θ σ
σ

∀ = …
∀ = … ∀ = …−

Extensions of Latent Variable 
Models and Suggestions for 
Future Research

In this final section, we highlight different 
fruitful paths for research using latent varia-
ble models. We discuss new ways that theory 
has informed particular modeling strategies 
and how this can provide new insights. We 
then present Multi-Rater/Aldrich-McKelvey 
Scaling models, which allow researchers to 
use latent variable models to reduce the 
impact of rater preferences when trying to 
develop uniform scales from expert surveys. 
We go on to introduce Multiple-Indicator 
Multiple-Causes models. These models are 
relatively common in psychology but are 
rarely used in published political science 
research, even though they provide a princi-
pled way to test what drives change in a 
latent variable. We then discuss problems 
with different model fit statistics. We close 
with a set of best practices useful for guiding 
future research.

The Seriousness with Which One 
Must Take Time

The modeling structures outlined above iden-
tify only a few ways in which researchers  

may care to model temporal dynamics. In 
practice, researchers are beginning to iden-
tify a variety of new strategies to address 
different forms of temporal non-independ-
ence. At times, for example, researchers 
have reason to suspect that the relationship 
between a manifest indicator and the latent 
trait may change over time. Kenwick 
(2018), for example, is interested in civilian 
control of regime institutions and argues 
that the strength of this control increases 
over time, with civilian control expected to 
be higher in a state where civilians have 
ruled for several decades than in one that 
had previously experienced a military take-
over. He therefore structures the prior dis-
tribution on the latent trait for civilian 
regimes as a random walk with drift, allow-
ing the values of the latent trait to system-
atically increase (or decrease) over time. 
Fariss (2014) faces a different type of tem-
poral non-independence in the study of 
human rights violations, and argues that the 
standards with which human rights reports 
are written has changed over time. To 
accommodate these potential biases, Fariss 
(2018b) allows the item discrimination 
parameters linking standards based indica-
tors to latent trait to vary over time to miti-
gate temporal biases.

In each case, the specific modeling struc-
ture used to generate estimates of the latent 
trait was informed by prior theory and the 
results are empirically validated against 
competing models. These examples dem-
onstrate how the choice of modeling struc-
ture can fundamentally alter the estimates 
of the latent trait itself, and the theoretical 
inferences one draws from the measure-
ment analysis. These insights are often non-
trivial and must be treated with the same 
care with which other forms of hypothesis 
testing are conducted. Nevertheless, these 
examples demonstrate how the prolifera-
tion of dynamic variable modeling tech-
niques offers fertile new testing grounds 
for the theoretical evaluation of concepts of 
interest.
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Models of Other Unit 
Dependences: Multi-Rater/ 
Aldrich–McKelvey Scaling

Latent variable approaches can also be useful 
in the context of expert and non-expert 
survey when there is concern over how indi-
viduals will respond to survey items. This 
question was first approached in research on 
surveys of voters in the United States (Aldrich 
and McKelvey, 1977; Hare et al., 2015), but 
has also recently been used in the context of 
expert surveys to quantify country level 
attributes (Marquardt and Pemstein, 2018). 
The benefits of these approaches, which we 
will refer to here as multi-rater IRT, is that in 
using them, researchers can place answers 
from survey participants that might view 
underlying concepts on different scales onto 
a single scale.

As an example, take the work of Marquardt 
and Pemstein (2018), in which the authors 
use a multi-rater model to place expert sur-
veys about democratic practices within a 
country on a single scale. They start with a 
survey of experts, asking them to rate several 
countries on a variety of democratic attrib-
utes. The problem with using these ratings 
directly is that different experts might have 
different opinions about how democratic a 
country must be to be considered the most 
democratic, and may also vary in their gen-
eral understanding of the question. This is a 
form of differential item functioning where 
the relationship between an item (a response 
to a particular survey question) and the latent 
trait varies.

To account for differential item function-
ing the β (discrimination) and α (difficulty) 
parameters are estimated for each survey par-
ticipant but held constant across the countries 
that they rated. For example, if Yic is expert 
i’s response to a question on country c then it 
would be estimated as a function of αi + βiθc.

This technique is fruitful not only in the 
context of expert surveys but also for non-
expert surveys where there are varying 
perceptions. Hare et  al. (2015) use this to 

identify ideological placement of US sena-
tors from a survey of voters. The multi-rater 
method accounts for the fact that more lib-
eral voters are likely to see the same senator 
as being more conservative than a moderate 
voter.

Nevertheless, in order for measures to be 
made comparable, there has to be a degree 
of overlap in the units that survey partici-
pants rate. This returns to the problem of 
bridging discussed above. Without overlap, 
the latent estimates will not be comparable 
across units. Overlap allows us to identify the 
degree of differential item functioning and so 
provide estimates of latent variables that are 
comparable when there is significant differ-
ential item functioning.

Adding Even More Structure: 
MIMIC Models

The final extension we consider is less 
focused on particular latent models and more 
on the use of estimates from the latent 
models. Latent models produce estimates of 
the latent traits that include error. The error 
needs to be a part of any future models that 
use the latent variable. When the latent vari-
able estimates are used as an independent 
variable, estimation that incorporates error 
can be achieved relatively easily. All that is 
necessary is to take N draws from the poste-
rior of the latent variable, estimate N models 
that use the latent variable as an IV and then 
combine those estimates using the same pro-
cess that is used to combine multiple 
imputations.10

Estimating models where the latent vari-
able is the dependent variable requires more 
care, but there are methods that are com-
monly used outside of political science 
that can accomplish this goal. Multiple-
Indicator Multiple-Causes (MIMIC) mod-
els were developed starting in the 1970s to 
allow researchers to use multiple measures 
of a trait when estimating the impacts of 
exogenous variables on that trait (Jöreskog 
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and Goldberger, 1975; Muthén, 1989). 
The MIMIC model approach is commonly 
employed in psychology (Krishnakumar and 
Nagar, 2008) and was more recently intro-
duced to political science in the context of 
political psychology (Pérez, 2011).

In brief, MIMIC models include covari-
ates for the latent variable that is being esti-
mated. These covariates are included in the 
initial estimation process and so capture the 
error that is inherent in measuring a latent 
variable. Covariates are included by mod-
eling θ directly as a function of the covariates 
instead of just setting a simple prior on it.11 
In addition to providing better estimates of 
the covariates on the underlying latent trait, 
MIMIC models can be modified to identify 
differential item functioning that is correlated 
with one of the covariates (Pérez, 2011).

One caveat for MIMIC models is that we 
are unaware of anyone who has connected 
the MIMIC approach to the dynamic latent 
variable approaches discussed here. Both 
approaches involve modifying the mode-
ling of the latent variable (either through an 
informative prior or a regression setup) and 
so connecting the two will require additional 
work.

Assessing Model Fit: WAIC for 
Hierarchical and IRT Models

WAIC (the Watanabe–Akaike or widely 
applicable information criterion) is currently 
one of the more preferred model diagnostics 
for Bayesian models (e.g., Gelman et  al., 
2014). However, several open research ques-
tions remain under-explored when using 
WAIC with hierarchical or IRT models.

WAIC is an approximation of leave-one-
out validation, but approximating leave-one-
out validation leads to a problem in IRT data 
over what ought to be ‘left out’ when validat-
ing models. That is, should individual items 
be left out for all unit-time periods, for units 
from a panel or for all unit-years? Or should 
all the items be left out for one of these unit 

structures? Newly published research extends 
WAIC to cases in which items are clustered 
within an observation (Furr, 2017) as well as 
other work incorporating time dynamics (Li 
et al., 2016). Another recent area of work is 
diagnostics, and best practices for WAIC and 
other models (Vehtari et al., 2017).

When there is concern over the validity of 
WAIC statistics, it is useful to also estimate 
a K-fold cross validation. This of course also 
requires removing a set of data and estimat-
ing the model. We suggest that researchers 
randomly sample indicators to remove so 
that each unit-time is still in the model. This 
allows estimates of latent traits for each unit-
time and those estimates can be used to cal-
culate a held-out log-likelihood.

We suggest that while this area of research 
continues, researchers should provide multi-
ple checks of model fit. Posterior predictive 
checks are another very powerful way to test 
how well an IRT model fits data (Gelman and 
Hill, 2007). Overall, fit statistics, posterior 
predictive checks and visual analysis of the 
temporal patterns of well-known cases allow 
for the evaluation of competing models with-
out relying on a single statistical tool.

Best Practices for Applied 
Measurement Research

Finally, as researchers use these methodolo-
gies, we propose a few useful suggestions on 
how to best approach modeling latent varia-
bles. It is our intention that these suggestions 
are consistent with the statistical modeling 
choices made when selecting the component 
parts of latent variable models, and that these 
choices will be made with reference to the 
two main types of construct validity also 
discussed. Recall that the process of meas-
urement occurs in three iterative stages: con-
ceptualization of the sociological or physical 
system being studied; operationalization of 
the data generating process that approxi-
mates the system; and empirical analysis of 
the data. The specific terms we use for each 
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of these three stages is concept, construct, 
data. Construct validity is an overarching 
term for assessing the relationship between 
one or more of the entities represented in 
each of these steps.12

•	 Validate by letting the theoretical concept 
drive the measurement specification: We 
have referred to this type of validation as trans-
lation validity and it is concerned with the link 
between the theoretical concept and the opera-
tionalized construct. It is not possible to consider 
a measure of an unobserved concept without 
referencing a theoretical concept. For a construct 
to be valid, it needs to translate the theoretical 
concept into an operational procedure that will 
generate data consistent with the theory. Thus, 
the first step for any research on latent variables 
is to outline the assumed relationships between 
the data generating process and the concept to 
be measured. Will the data generating process 
produce indicators that reflect the underlying 
concept of interest? Are the proposed items 
manifest of the underlying concept? Are the pro-
posed items substitutes for each other? How are 
proposed items measured over time?

•	 Validate by assessing the assumptions of 
the measurement model as they relate to 
theoretical concept of interest. This is also a 
suggestion about translation validity. How does 
the specification of the measurement model 
translate the theoretical concept into the opera-
tional procedure that generates the observed 
data? Every measurement model has underlying 
assumptions and it is important that any empiri-
cal patterns are the result of the underlying 
data and not of the assumptions. In the case of 
latent measurement models, researchers must 
pay close attention to any parameters that are 
set without reference to theory of their concept 
of interest.

•	 Validate the fit of the measurement model 
as it relates to the observed data. How 
does the model of the data generating pro-
cess, the latent variable, fit the observed data? 
This is an assessment of measurement valid-
ity. Measurement validity is an evaluation of 
the fit between the proposed data generat-
ing procedure and the actual data obtained 
from it. WAIC (the Watanabe–Akaike or widely 
applicable information criterion) and other  
statistical tools are useful ways to test model fit, 

but researchers should not just select a model 
based on a single statistical tool. One useful 
way to test competing models is to focus on 
divergent estimates and use a priori knowledge 
about the world to validate which one is the 
best.

There is no guarantee that any single mode-
ling strategy will be equally well-suited for 
use with all data types or for estimating all 
types of latent concepts. The assumptions of 
the measurement model will influence the 
conclusions researchers draw about the 
underlying theoretical concept of interest, as 
well as the empirical linkages between these 
concepts and other political phenomena.

CONCLUSION

The assessment of theories about political 
institutions and behaviors often requires 
measuring concepts that are not directly 
observable. Thus, for science to proceed, 
measurement is essential, because without a 
clearly articulated link between the empirical 
content of a study and the theoretical struc-
ture that gives rise to that content, it is not 
possible to make claims about the relation-
ship between data and the world. Yet, despite 
the necessity for valid measurement, research 
in the social sciences still often tends to 
ignore the construct validity of most meas-
ures and usually takes existing data, espe-
cially experimental data, for granted or at 
least as good enough. Thus, one of the criti-
cal steps in evaluating theoretical concepts is 
the development, formalization and valida-
tion of measurement models. This is because 
there is no model-free way to measure unob-
servable or difficult to observe concepts. And 
many of the concepts of interest to the politi-
cal science community are often by defini-
tion difficult to observe. As we have discussed 
in this chapter, construct validity – and meas-
urement models in general, and latent varia-
ble models in particular – are tools which are 
useful for systematically evaluating the 
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relationship between concepts, operational 
procedures (e.g., the data generating process) 
and data.

Notes

 1 	 For the purposes of this chapter, we focus exclu-
sively on unidimensional measurement mod-
els that are explicitly created in an effort to link 
observed data to an unobservable concept.

2 	 The development of the concept of construct 
validity has occurred over many decades. Primary 
contributors include: Campbell and Fiske (1959); 
Campbell (1960); Campbell and Ross (1968); 
Cook and Campbell (1979); Shadish (2010); 
Shadish et  al. (2001). However, the conceptual 
meaning of the terms used in these article have 
evolved over time. As Jackman (2008) notes, 
‘there are several species of measurement valid-
ity. But at least in the context of latent variables, 
the term “construct validity” has lost much of the 
specificity it once had, and today is an umbrella 
term of sorts’ (122). We use the term construct 
validity in this way and point out specific sub-
types where appropriate. We note further that 
different fields and subfields use the various con-
struct validity terms in different ways, which has 
led to some confusion when translating across 
terms. Adcock and Collier (2001) review this issue 
in brief, but like them, we leave a full accounting 
for the agreement and disagreement of overlap-
ping validity concepts to future work.

 3 	 Reuning et  al. (2018) provide a complete and 
detailed set of replication files that demonstrate 
how to use these particular latent variable models 
using both applied examples and a set of simula-
tion-based models: https://doi.org/10.7910/DVN/
SSLCFF.

 4 	 We build on ideas covered in Adcock and Col-
lier (2001) and elsewhere (e.g., Jackman, 2008; 
Shadish, 2010; Shadish et al., 2001).

 5 	 The additive scale can be seen as a result of 
rewriting this to βk (θi − αk) and fixing β = ∞. 
This creates the step function that can be seen in  
Figure 20.2.

 6 	 As the number of dimensions for the latent vari-
able increases there is an increasing number of 
invariant rotations. For one dimension there are 
only two equivalent estimates; with two dimen-
sions that number increases to eight (e.g., Jack-
man, 2001).

 7 	 In the following section we will continue to 
leverage the normal prior for identification con-
straints, but we will introduce modifications to 
accommodate temporal dynamics.

 8 	 The σ parameter is sometimes referred to as the 
innovation parameter.

 9 	 In practice, one can also substitute a Student’s 
t-distribution with a very high degree of freedom 
(e.g., 1,000), which closely approximates the nor-
mal distribution.

 10 	 Mislevy (1991), Bolck et al. (2004) and Schnaken-
berg and Fariss (2014) each provide arguments 
and detailed suggestions on how to incorporate 
the uncertainty from latent variable estimate 
using the multiple imputation equation formula 
from Rubin (1987).

11 	 For more detailed discussion of estimations of 
MIMIC models see Fahrmeir and Raach (2007).

 12 	 Two important parts of construct validity are 
translation validity and measurement valid-
ity. Translation validity is an evaluation of the 
match between the theoretical construct and 
the proposed data generating procedure which 
generates the observed pieces of information. 
Measurement validity is an evaluation of the fit 
between the proposed data generating proce-
dure and the actual data obtained from it (Fariss 
and Dancy, 2017).
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