
Introduction to R for
Programmers

Class Material
http://polisci2.ucsd.edu/cfariss/Home/Christopher_J_Fariss.html

http://nostarch.com/artofr.htm

Getting Started
The working Directory

The workspace

Getting help

Declaring Objects in R
There are several alternatives

<-

->

=

the "_" underscore was the original declaration symbol

Vectors
Not to be confused with vectors in space.

Scalars are vectors too

Indexed beginning with 1.

There is no error if you use a 0 index however so be careful.

a <- c(1,2,3,4,5)

the c() function in R concatenates together elements of the
same type (we'll put together elements not of the same type
later).

Libraries/Packages
install before loading
install.packages("PACKAGE_NAME")

load packages:
library(PACKAGE_NAME)

note that "#" is the comment character in R and that
quotes are only necessary in 1 of 2 functions above (I have
no idea why).

there are some quirky features to R as the book describes

Lists
Lists are like vectors except that can combine elements of
multiple types. You can even combine lists of lists of lists ...
and so on.

Figuring out what a list contains however is a little bit tricky,
at least compared to vectors, matrices and arrays.

a simple list, with 3 elements:
(1) a named character
(2) an unamed scalar
(3) a named vector
l1 <- list(name="list1", 3, values=c(3,8,9))

Vectors, Matrices and Arrays
You can declare vectors, matrices and arrays with the
following functions:

vector(), matrix(), array()

each function takes different arguments. vector() is seldom
used however because its easier to use c().

matrix() is used more often than array (at least in political
science but probably not ecology) because the arguments
are clearer.

a 2-dimensional array() is equivalent to an object declared
as a matrix.

Loops!
Loops should be avoided at all costs in R but you'll use them
often.

Seriously, though loops are relatively slow because of the
way R processes the functions contained within the loop.

We'll see some timed demonstrations later on in the 2nd and
3rd R scripts.

As a rule of thumb, you should avoid loops if you are doing
more than 10,000 combined iterations.

Short loops are fine. But loops don't scale well at all.

Reading data into R

R has many many ways to solve problems.

It also has lots of ways to read in and store data.

We will go over a few that I use a lot.

Specifically, csv files and sometimes R files.

You're choice should depend on the size and type of the
data file.

For Stata users: Remember library(foreign)

Reading data into R

R has many many ways to solve problems.

It also has lots of ways to read in and store data.

We will go over a few that I use a lot.

Specifically, csv files and sometimes R files.

You're choice should depend on the size and type of the
data file.

For Stata users: Remember library(foreign)

Data Frames
Think of a data frame in R as a hybrid object that looks like a
matrix but can include multiple data types like a list.

Dataframes are useful objects when using statistical
functions like linear regression using the lm() function.

Let's read in a csv file make sure its declared as a data
frame.

Math!
As you might imagine, R can do it all.

We'll go over a few but we are just scratching the surface.

Problem 1
1a. use a for loop to go through the data frame and generate
a new variable that is a function of at least 2 existing
variables using one of the mathmatical functions above

1b.
If 1a seems to easy then tryout the subset command on the
macro dataframe. See if you can make a random subset of
half of the records from that file. Then, if there's time, run a
linear model using the lm() function. Then use the predict
function to see how well the model fits to the out of sample
data (the data not randomly selected).

All of these functions are discussed in more detail here: http:
//polisci2.ucsd.edu/cfariss/code/BootCamp_p2.R

Vectorization
Now we want to learn how to use R in a way that minimizes
are use of loops when possible. There are a lot of ways to
do this of course.

The apply() functions are very useful for this purpose:

apply() # for matrices
lapply() # for lists
sapply() # for lists without all the list formatting
tapply() # for tables

Simulations and Distributions
R has all the bells and whistles here too. All of the basic
discrete and continuous functions are available and its
simple to combine these into all manner of mixed
distributions for simulation purposes.

If you are interested I have some mixed distribution code I
can share.

You should also check out Chapter 3 in this book:
"Ecological Models and Data in R"
http://www.math.mcmaster.ca/~bolker/emdbook/

Discrete Distributions

Binomial Distribution

Binomial Distribution

Poisson Distribution

Poisson Distribution

Negative Binomial Distribution

Negative Binomial Distribution

Continuous Distributions

Gamma Distribution

Gamma Distribution

Beta Distribution

Beta Distribution

Strategies for compounding and
generalizing distributions

In other words, what do you do when your data do not fit any
of these simple distributions?

Strategy 1: Add covariates

Look for systematic differences within data that explain non-
standard shape of distribution

Example: bimodal or multimodal distributions, which
represent data that are a collection of objects from different
populations with different means

Strategy 2: Make a mixture model
What if there aren't systematic differences?

Finite mixtures
- Assume that observations are drawn from discrete set of
unobserved categories, each with own distribution
- All categories typically have same type of distribution, but
with different means or variances
- These often fit multimodal data
- Use parameters of each component of the mixture + set of
probabilities describing amount of each component

Zero-inflated models = common type
- Combine standard discrete probability distribution with some
additional process that can lead to zero count

Finite mixture distribution

Zero Inflated Binomial distribution

Problem 2
Simulate values from a normal distribution (or any one of the other
distributions you prefer) as a function of the index values from the object
you store the draws in.

For a matrix make the values in each cell a function of that cell's first and
second dimension. This should be straightforward using 2 for loops.

Start with a vector and one for loop if you're still getting used to loops and
the idea of nesting them.

Once your loops are working try to re-create the same matrix or vector
without using loops or using one less loop if you are using a matrix.

If you are feeling really ambitious try this with a 3 dimensional array.

User Defined Functions
foo <- function(a, b)
{
 return (a+b)
}

If you are repeating a process over and over again it may be
worthwhile to write your own function. They are also
necessary for optimization problems using the optim()
function (I have code for this too if you're interested).

bootstrapin.boogie()
This next function looks complicated but it combines
functions that we've already seen earlier in the workshop.

And it has a cool name!

Fun with Regular Expressions
hopefully we haven't run out of time.

regular expression process and analyze text

dealing with text can be very computationally demanding
which is why I am introducing these functions.

Problem 3
See if you can generate a binary document-by-term matrix
using the corpus of 10 tweets readin above

hint: you will need to use a couple of functions that I have
not covered, which are:

unqiue() and strsplit()

If there's still time ...
http://polisci2.ucsd.edu/cfariss/code/SIMols.R

http://polisci2.ucsd.edu/cfariss/code/SIMlogit.R

Normal distribution with
beta distributed variance

Thanks!

