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Abstract

Researchers face a tradeo↵ when applying latent variable models to time-series, cross-sectional
data. Static models minimize bias but assume data are temporally independent, resulting in
a loss of e�ciency. Dynamic models explicitly model temporal data structures, but smooth
estimates of the latent trait across time, resulting in bias when the latent trait changes
rapidly. We address this tradeo↵ by investigating a new approach for modeling and evalu-
ating latent variable estimates: a robust dynamic model. The robust model is capable of
minimizing bias and accommodating volatile changes in the latent trait. Simulations demon-
strate that the robust model outperforms other models when the underlying latent trait is
subject to rapid change, and is equivalent to the dynamic model in the absence of volatility.
We reproduce latent estimates from studies of judicial ideology and democracy. For judicial
ideology, the robust model uncovers shocks in judicial voting patterns that were not pre-
viously identified in the dynamic model. For democracy, the robust model provides more
precise estimates of sudden institutional changes such as the imposition of martial law in the
Philippines (1972-1981) and the short-lived Saur Revolution in Afghanistan (1978). Overall,
the robust model is a useful alternative to the standard dynamic model for modeling latent
traits that change rapidly over time.



Political scientists are increasingly focused on improving the measurement of unobservable

concepts. Recent methodological and computational advances have led to a flourishing of

latent variable modeling techniques that provide researchers with a means of measuring

these concepts based on events, ratings, or other observed information that are assumed

to be manifestations of the unobservable latent trait (Imai, Lo and Olmsted 2016; Martin

and Quinn 2002; Carpenter et al. 2016). These models have been applied across a variety

of subfields, encompassing the study of political ideology (Barbera 2015; Martin and Quinn

2002; Caughey and Warshaw 2015; Kōnig, Marbach and Osnabrügge 2013; Pan and Xu 2018;

Treier and Hillygus 2009), political attitudes, knowledge, and preferences (Blaydes and Linzer

2008; Pérez 2011; Jesse 2017; Stegmueller 2011, 2013), regime type (Treier and Jackman

2008; Pemstein, Meserve and Melton 2010), UN voting positions (Voeten 2000), human

rights abuse (Schnakenberg and Fariss 2014; Fariss 2014), human rights treaty embeddedness

(Fariss 2018), judicial independence (Linzer and Staton 2016), and institutional transparency

(Hollyer, Rosendor↵ and Vreeland 2014).

In several recent applications, these models are applied to time-series cross-sectional

data (e.g., Treier and Jackman 2008; Pemstein, Meserve and Melton 2010; Schnakenberg

and Fariss 2014; Fariss 2014, 2018; Linzer and Staton 2016). Two modeling strategies are

commonly applied to accommodate this data structure, but both face limitations when

confronted with certain types of temporal dynamics. Until recently, the most commonly

used latent trait model for time-series cross section*al data assumes that each observed time

period is an independent observation. This type of model is usually referred to as static.

For many applications, this assumption is appealing because estimates of the latent trait are

determined exclusively by the observed data for a particular unit at a given time point. As

a result, static models easily accommodate rapid changes in latent traits over time. Yet, the

static approach ignores the time-series nature of the data and imposes a tenuous assumption

of local independence with respect to time.

More recently, the “dynamic approach” has emerged as a useful alternative (Jackman
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2009, 471-485). Here, the time series structure of the data is accommodated by modeling

the latent trait as a random walk or through a local linear model. In Bayesian analysis,

this is typically modeled through the prior information assigned to the latent trait for units

at each time point. In doing so, these models smooth the estimates over time periods for

a given unit. This smoothing is often theoretically appealing and leads to more e�cient

estimates (Armstrong II et al. 2014, 303-309).

There are limitations to both the static and dynamic strategies when modeling a poten-

tially volatile latent trait. Dynamic models will over-smooth these transitions, causing rapid

changes to appear as gradual transitions, thus biasing the resulting estimates. Static models

accommodate sudden changes but at the loss of e�ciency and without directly modeling the

temporal dynamics, which are often of substantive interest. Assuming away the dynamic

structure of the model, leads to a loss of important information, which makes evaluating and

testing hypotheses involving latent concepts more di�cult. These limitations are important

for political scientists as many political constructs are characterized by punctuated equilib-

ria or similar theoretical processes where rapid change is possible after long periods of stasis

(e.g., Leventoğlu and Slantchev 2007). Political institutions, for example, often persist for

generations only to collapse or change suddenly (e.g., Grief and Laitin 2004). Exogenous

shocks may also result in concomitant changes in individual level-traits such as political

preferences or partisan identification (e.g., Baker et al. 2016).

In this article, we introduce a robust version of the standard dynamic model. We demon-

strate that the robust model retains the theoretically useful features of the dynamic model

while reducing bias in the estimates that result from over smoothing. This model changes the

distributional assumptions conventionally applied to the latent trait while still incorporat-

ing temporal information. After a brief discussion of these three models, we evaluate their

relative performance. We find that the robust model outperforms conventional modeling

choices across a variety of metrics. Further, we find that the robust model performs as well

as the dynamic model, even when simulated conditions match the assumptions underlying
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the dynamic model.

Next, we reproduce and evaluate two common latent variables in political science: judicial

voting preferences (Martin and Quinn 2002) and democracy (Pemstein, Meserve and Melton

2010). We find that the estimates from the robust latent variable model reveal previously

unobserved shocks and improved fit for both constructs. Substantively, the robust model

provides evidence that judicial voting patterns sometimes change rapidly for a subset of

Supreme Court justices. We also find that the robust model provides more precise estimates

of democracy in response to sudden political events such as the imposition of martial law

that occurred in the Philippines from 1972 through 1981 under the regime of Ferdinand

Marcos and the short-lived Saur Revolution in Afghanistan in 1978. The analyses indicate

that the robust latent variable model yields substantively meaningful insights not obtainable

from existing latent variable modeling strategies.

Modeling Strategies and Simulation Analysis

We begin by briefly discussing the static and dynamic modeling strategies and introducing

the robust modeling alternative. We also outline a simple data generating process and the

priors which we will use in a simulation analysis of the competing models.

We begin with a simple item response theory framework (IRT) with binary manifest

variables.1 The latent trait, ✓it exists for each unit, i = 1, . . . , N across each time period t =

1, . . . , T . ✓it is not observed directly, but determines the value of a series of manifest variables,

or items, ykit, where k = 1, . . . , K indexes the number of items observed. Thus, yitk is the

observed value for item k for unit i at time t. For each item, ↵k and �k are estimated. These

are commonly referred to as the “di�culty” and “discrimination” parameters, respectively

and are analogous to an intercept and slope in traditional logit regression. The likelihood

1The models generalize to other types of manifest variables as well.
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function takes the following form, where ⇤ is the logistic function:

L =
N,TY

i,t=1

KY

k=1

⇤(↵k � �k✓it)
yitk

�
1� ⇤(↵k � �k✓it)

�1�yitk

We place weakly-informative, normal priors on the di�culty and discrimination parameters.

In addition, �k, the di�culty parameter, is constrained to be greater than 0. This is a

common identification constraint that resolves rotational invariance by preventing “flipping”

where the likelihood from �̂k and ✓̂it is equal to the likelihood from ��̂k and �✓̂it. All the

items are then coded so that a 1 indicates increased levels of the latent trait, and a 0 decreased

levels.2 Formally our priors are:

↵k ⇠ N(0, 3)

�k ⇠ HN(0, 3)

HN is the half-normal distribution, with support on [0,1). All models presented here share

these priors on their item parameters.

Static Model

The three modeling strategies we present are di↵erentiated by the prior information assigned

to the latent variable. The static model, places a standard normal prior on all units for all

time periods:

Static Model Prior

✓it ⇠ N(0, 1) 8i = 1, . . . , N & 8t = 1, . . . , T

2When the polarity of an item is not known then other identification constraints must be

considered by the analyst (Martin and Quinn 2002).
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Estimates for each unit in each time period are therefore di↵erentiated exclusively by the

values of the manifest variables for that unit at that time period. This allows for sudden

changes in the latent estimates in a unit between time periods. A shortcoming of this

model is that it treats each observation as independent. In the case where the manifest

variables contain su�cient information on the latent trait, this modeling strategy may not

be problematic. Unfortunately, this is seldom the case when using social science data, where

indicators are often coarse or missing. As a result, these indicators often do not contain

su�cient information to di↵erentiate between theoretically distinct units.

Standard Dynamic Model

To address temporal non-independence in the data, many researchers use a dynamic prior for

the latent trait (Martin and Quinn 2002; Schnakenberg and Fariss 2014; Fariss 2014; Caughey

and Warshaw 2015; Kōnig, Marbach and Osnabrügge 2013). The choice of a “random walk”

prior on the latent variable is particularly common.

Researchers apply a standard normal distribution to the latent trait in the first observa-

tion period for every unit. For each subsequent time period, the prior is normally distributed

with mean ✓i(t�1), and an innovation standard deviation � which is either assigned by the

researcher or, more commonly, estimated from the data. Here, we assign a weakly informa-

tive prior to � by using a half normal distribution with standard deviation of 3 and mean

0.3

Standard Dynamic Model Priors

✓i1 ⇠ N(0, 1) 8i = 1, . . . , N

✓it ⇠ N(✓i(t�1), �) 8i = 1, . . . , N & 8t = 2, . . . , T

� ⇠ HN(0, 3)

3In our applications, � is fixed across units, though this assumption can be relaxed to

account for unit-specific variation (Imai, Lo and Olmsted 2016) .

5



This strategy trades the assumption that observations are independent with the assump-

tion that the latent trait will be correlated over time. As a result, estimates from dynamic

models typically have less uncertainty because more information is used to estimate each la-

tent variable. This also induces smoothing over time because changes between time periods

are constrained. When researchers have theoretical reasons to expect that the latent trait is

relatively slow-moving over time, both modeling features can be desirable. If, however, the

latent trait is subject to rapid fluctuations or state-changes between time periods, this tem-

poral smoothing can produce biased estimates. The modeling strategy we introduce below

is designed to address this problem while still accounting for temporal dynamics.

Robust Dynamic Modeling

Our alternative strategy draws on the robust modeling literature. Robust models, broadly

defined, weaken the parametric assumptions common to standard statistical models as a

means of accommodating unique data structures and the potential for influential outlying

observations. One simple modification commonly used is the substitution of normally dis-

tributed errors with Student’s t-distributed errors (Gelman et al. 2014; Lange and Sinsheimer

1993; Lange, Little and Taylor 1989). A specific Bayesian approach to the use of the Stu-

dent’s t-distribution has been developed (Geweke 1993; Fonseca, Ferreira and Migon 2008).

This strategy has been used to account for heterogenerity in growth models (Zhang et al.

2013), ordinal choice models (Stegmueller 2013), and mixed e↵ects models (Rosa, Gianola

and Padovani 2004) among others. Within our context, potential outliers are “shocks” where

values of the true latent variable change suddenly within a unit’s time series. As a prior

on the latent variable ✓, the Student’s t-distribution is less-restrictive when estimating the

temporal data generating process that relates to the latent trait with the observed manifest

variables because it has greater density in the tails when compared to the standard normal

distribution (for details on the Student’s t-distribution see Appendix A).
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To develop a robust dynamic model, we set the prior for the first year in a particular

time series to a standard normal distribution.4 For every subsequent year, the prior then

follows a Student’s t-distribution, with four degrees of freedom. Setting the degrees of

freedom to a relatively low value increases the density of the tails of the distribution which

allows “extreme values” to be estimated from time period to time period. Thus, the model

smooths estimates across time during periods of stability, but also allows for rapid changes

in the latent trait during periods of volatility. In the cases presented here we set the degrees

of freedom and estimate the scale parameter �. In Appendix A we discuss an alternative

model specification where we estimate the degrees of freedom parameter instead of �, as

well as a model that jointly estimates both parameters. We find that this does not improve

model fit while potentially compounding rotational identification concerns in some cases and

being computationally more taxing. Because of this, we opt to set the degrees of freedom at

a low value of 4, as recommended by Gelman et al. (2014).

Robust Dynamic Model Priors

✓i1 ⇠ N(0, 1) 8i = 1, . . . , N

✓it ⇠ T4(✓i(t�1), �) 8i = 1, . . . , N & 8t = 2, . . . , T

� ⇠ HN(0, 3)

Potential Alternatives

In addition to the robust model there are several alternative modeling strategies that could

be used to accommodate temporal shocks. First, given an assumed data generating process

that is a combination of a dynamic process and a static process a finite mixture modeling

4In practice, one can also substitute a Student’s t-distribution with a very high degrees

of freedom (e.g. 1,000), which closely approximates the normal distribution.
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strategy might be a useful strategy. We assess such a model in Appendix B and find that

the mixture model is outperformed by the robust model in almost all cases.

Another potential strategy would be to employ a change-point model (Western and

Kleykamp 2004) or regime switching model (Hamilton 2010). These models capture the

intuition that there is a discrete change in the underlying process. However, estimating

these types of models requires a priori attention to the number of expected change-points

and are commonly employed only in time-series analysis (e.g., Pang et al. 2012) but have

seen some use in panel data (e.g., Spirling 2007; Joseph et al. 1997). One of the main

modeling challenges is estimating the discrete number of change-points. This issue is par-

ticularly intractable for the types of punctuated equilibrium processes discussed here where

the number of shocks or change-points that are likely to exist in a given time series are not

known ex-ante and vary across panels. In the univariate case, there have been some very

useful developments in models without a fixed number of change-points (Santifort, Sandler

and Brandt 2013). Other alternatives also exist for continuous time latent variables that do

not assume discrete time intervals (Tahk 2015) as well as latent growth models which pro-

vide a flexible framework for specific theoretically driven assumptions about latent change

over time (Duncan and Duncan 2004). Evaluating all of these models is beyond the scope

of this paper but each o↵ers important opportunities for generating new inferences about

unobservable concepts.

Simulation Analysis

To evaluate model performance we simulate conditions where the true data generating pro-

cess is known. We focus in particular on situations where there is some time-series structure

to the underlying latent trait. We do not evaluate any models in which there are no tempo-

ral dependencies in the underlying data generating process (e.g. the static model) given our

focus on improving modeling techniques for data with dynamic temporal structures. While

latent traits are sometimes temporally independent and identically distributed, we focus on
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more common conditions when this is not the case. In all our simulations, the latent trait is

drawn from a standard normal distribution in its first time period and follows a random-walk

process with the probability of a “shock” thereafter. When a unit experiences a shock, it

is re-drawn from a standard normal distribution, thus inserting “breaks” in the time-series

such that the latent trait is subject to the possibility of rapid change. From these “latent”

variables, we estimate binary manifest indicators that are recorded with error for each ob-

servation. With these data in place, we estimate variants of the static, dynamic, and robust

models and evaluate their performance under a variety of conditions. Information on these

analyses, along with additional information on the underlying data generating process are

available in the appendix.5 Here, we provide a brief overview of our findings.

Figure 1 displays the di↵erences in estimates of the latent trait from the static (left

column), dynamic (center column), and robust (right column) for two sample units. These

units were simulated with the probability of shock was set to 0.01, and the innovation

standard deviation set to 0.05.6 The first of these units (top panels) is representative of

cases where the latent trait is relatively stable across time and does not experience a shock.

The second (bottom panel) represents a case where a shock to the latent trait occurs after

5We provide a more detailed discussion of the data generating process for the simulation

in Appendix C. We assess model performance in the time surrounding shocks to the latent

trait in Appendix C.2, accuracy in ranking observations in Appendix C.3, within-unit rank

correlations in Appendix C.4, cross-validated accuracy in Appendix C.5, and di↵erences

between time periods in Appendix C.6. We also consider models that estimate the degrees

of freedom parameter from the student’s t-distribution instead of the innovation standard

deviation in Appendix C.7, and the estimation of both of these parameters in Appendix C.8.

6The simulation analyses in the appendix explore model performance with these parame-

ters set to a variety of values. We chose 0.01 and 0.05 for this example because they represent

plausible conditions for political science data where temporal variation is often relatively low

relative to cross-sectional variation, and where “shocks” occur, but are relatively rare.
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period 20.

Figure 1: Model Estimates Across Two Sample Unites
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Note: 95% Credible Intervals for two sample units using the four di↵erent modeling strategies. The

true latent value is displayed with a dark line, and is the same in each column.

The e�ciency loss in the static model is apparent for the unit that did not experience

a shock. By e�ciency loss, we mean a decrease in the amount of information contained

in the estimate of the latent variable which translates into a flatter (and less informative)

estimated probability density for each unit within the latent space. Although the true

latent variable is within the credible interval of the static model across all time points, the

credible intervals vary widely around it. This is because estimates at each time period are

generated independently and so there is relatively limited information used in each time

period. As expected, the dynamic and robust model generate lower estimates of uncertainty

by leveraging time-series information in the data. Of particular note is that the use of

the Student’s t-distribution by the robust model does not lead to a significant increase

in estimates of uncertainty relative to the dynamic model. The advantages of the robust

model are apparent for the unit experiencing a shock. As before, the static model’s credible

intervals are wide, but almost always capture the true estimate. By contrast, the dynamic

model over-smooths the sudden changes in the time series and therefore fails to produce

accurate credible intervals over several time periods before the shock. The robust model,

by contrast, produces relatively small credible intervals (in comparison to the static model)
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and is also capable of accounting for sudden changes to the true latent trait when the shock

happens.

Next we show how these results generalize to many simulated units drawn from the

described data generating process. In Figure 2 we plot the percentage of observations where

the true latent trait value is contained within the 95% credible interval generated for each

model as a function of the time before and after a shock to the latent trait (experienced

at time t = 0). As expected, the static model performs particularly well using this metric

due to its large credible intervals. More relevant for our purposes, the model performs

equally well across all time periods, regardless of whether and when a unit experienced

a shock. By contrast, the dynamic model performs well for units that have not recently

experienced a shock, and poorly in the time of or proximate to a shock. This dip in accuracy

is significantly mitigated, though not reduced entirely by the robust model. Taken together,

the simulation analyses reported here and in the appendix indicate that the robust model

is a viable alternative to standard dynamic modeling choices, particularly for latent traits

subject to temporal volatility.

Figure 2: Model Accuracy in Time Surrounding Shocks to the Latent Variable
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Note: The percentage of times the true latent variable is within 95% credible intervals. The horizon-

tal axis is the distance away from the nearest shock. We omit a small number of observations that

were within three time periods of two shocks. A distribution of values is estimated by generating

50 di↵erent simulated datasets – the bounds show the 20
th

and 80
th

percentile.
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Substantive Applications

We now assess how the robust latent variable model performs using data from two important

applications of latent variable models: a model of judicial ideology from Martin and Quinn

(2002) who originally used a dynamic model; and a model of democracy from Pemstein,

Meserve and Melton (2010) who originally used a static model. For each, we estimate the

original models and compare these original modeling strategies to the robust latent variable

model. We assess model fit using the Widely Available Information Criterion (WAIC),

posterior predictive checks, and visual assessments of well-known cases.7

Martin and Quinn (2002)

Martin and Quinn (2002) design a latent variable model to measure United States Supreme

Court justice ideology. The units are Supreme Court justice years and the items are the

votes that each justice cast in a particular case. Each vote is coded zero or one depending

on whether it overturns or a�rms a lower court decision. Justices serve for multiple years,

and Martin and Quinn (2002) use a dynamic model with random walk priors to model the

position of the justices over time. We replicate this model using the data made available

on their website which extends the timespan of the original model to contain the years

1937-2015.

The sparsity of data along with a lack of clear polarity for cases-votes required Martin

and Quinn (2002) to achieve identification through two modeling decisions. First, a subset

of justices are assigned strong priors to allow them to act as anchors within the policy space.

In addition, because of a sparsity of data they–after some experimentation–fix the value of

the innovation variance (�2) to 0.1.8

Fixing the value of �2 warrants some additional discussion before proceeding. Often

7All models are estimated in Stan (Carpenter et al. 2016) using 4 chains and 2,000 iter-

ations. Convergence diagnostics are in Appendix G.

8The authors also set Douglas to 0.001, as he was present at very few cases near the end
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researchers estimate this parameter directly from the data, but sparse data structures such

as this sometimes lead research to fix �2. This value must be chosen carefully. When �2 ! 1,

the model will produce estimates for each period of time independently. Assigning �2 a value

that is too large may produce a model that is not rotationally identified in cases where there

are no expectations about the direction of the relationship between items and the latent

trait. When �2 = 0, the dynamic model will produce a single time-invariant estimate of the

latent trait. Setting �2 to a value that is too small therefore ignores temporal variation of

the latent trait. For a standard dynamic model, this is equivalent to fitting a flat line to a

time-series.

The robust model is no less sensitive to these modeling decisions and shares many of

the same properties as the standard dynamic model. One important exception, is that

as �2 approaches zero, the robust model may fit an approximately stepwise function to

smooth linear trends in the latent trait. This would result in the appearance of shocks

in a time series where none is present.9 We therefore recommend practitioners estimate

the value of �2 directly from the data when possible. If this parameter must be fixed, we

recommend researchers evaluate model performance using multiple values of �2. At each

step, practitioners should evaluate model performance through a variety of metrics including

those employed here: fit statistics such as WAIC; posterior predictive checks (particularly

in times surrounding the “shocks” identified by the robust model); and visual inspection of

the data.

We use a prior assignment and identification strategy similar to Martin and Quinn (2002),

including setting the innovation variance to 0.1 for all justices except Douglas and providing

informed priors around a subset justices for their initial year on the court. In addition,

of his term and is therefore much less likely to change positions over time.

9Appendix D contains a simulation analysis comparing the dynamic and robust models

with fixed values of �. In Appendix E we evaluate the e↵ect of either inflating or estimating

�2 for the Martin and Quinn (2002) replication and find no substantive di↵erences.
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because we use a more expansive dataset than originally employed by Martin and Quinn

(2002) we impose two additional priors on justices at the very end or very beginning of the

time series: Samuel Alito is given a prior on ✓ centered at 1.5 and Hugo Black is given a

prior on ✓ centered at -3. To ensure rotational identification we constrain some justices to be

strictly positive or negative.10 Finally, as in Martin and Quinn (2002) we find that Douglas’s

extremely limited and liberal voting pattern leads to near separation so we tighten the

innovation variance to 0.0001, slightly tighter than the 0.001 imposed by Martin and Quinn

(2002). In the robust model we set the scale parameter in the Student’s t-distribution so

that the overall innovation variance is 0.1 given a Student’s t-distribution with 4 degrees of

freedom.11

We evaluate model fit through posterior predictive checks (Gelman et al. 2014; Gelman

and Hill 2007). We sample from the posterior distribution of the parameter estimates gen-

erated from each model and use these values to make predictions about the votes cast by

justices in each of the cases heard during their tenure. For every draw, we compute the pro-

portion of justice decisions correctly predicted by each model. The robust model accurately

predicts Supreme Court decisions 72.95% of the time, while the dynamic model generates

accurate estimates 72.77% of the time. Although this is a substantively small di↵erence, it

is probabilistically distinguishable from 0. The fact that the robust model’s improvement is

modest should be unsurprising, as the comparative advantage of this model pertains to the

10We constrain Marshall and Brennan to be strictly negative (liberal) and Rehnquist,

Scalia, and Thomas to be strictly positive (conservative).

11The scale parameter in the Student’s t-distribution is similar but not equivalent to the

variance parameter in the normal distribution. For the normal distribution and the three

parameter Student’s t-distribution to have the same variance, the scale parameter of the

Student’s t distribution is set to ⌫�2
⌫ �norm (⌫ is the degrees of freedom and �norm is the

standard deviation of the normal distribution). For the majority of justices we set this to

0.22 (for Douglass this is set to 0.007).
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relatively small subset of instances where a Supreme Court justices’ voting position suddenly

changes between years. Nevertheless, the improvement in predictive power is substantively

meaningful for the subset of cases that seem to experience rapid fluctuations.

We estimate WAIC as a second means of comparing the models. WAIC is a fully bayesian

alternative to DIC and is asymptotically equal to Bayesian Leave-One-Out Cross-Validation.

WAIC estimates the expected log pointwise predictive density12 by estimating the log point-

wise predictive density (LPPD)13 and correcting it by the number of e↵ective parameters

(Furr 2017; Vehtari, Gelman and Gabry 2016). When estimating the expected model per-

formance on new data, it is necessary to determine the form that hypothetical out-of-sample

data will take (Gelman et al. 2014). In this context, we evaluate out-of-sample performance

in terms of new realizations of a particular justice’s decision on existing court cases. The

LPPD is therefore calculated using the likelihood of a judicial decision, given each judge’s

latent preference. The e↵ective numbers of parameters correction is estimated using the

summation of the variance of the log prediction density for each vote.14

The di↵erence in the WAIC scores provides evidence that the robust model is outper-

forming the original dynamic model. The estimate of WAIC for the dynamic replication is

46,852, reported on the deviance scale. The robust model improves on this, with a WAIC of

46,647. This is a di↵erence of 205 with a standard error of 15.6 – the robust model better

fits the data than does the dynamic model.

12This is
PN

i Ef

�
log ppost(ỹi)

�
where Ef is the expectation over the distribution of data

from the true data generating process and ỹi is a single new data point. The true data

generating process is unknown, and so f must be estimated, but this leads to the model

appearing to fit the data better than it does.

13LPPD can be calculated by using draws from the posterior distribution:
Pn

i log
�
1
S

PS
s=1 p(yi|✓s)

�
where ✓s is a single draw from the posterior distribution of ✓.

14We use the summation of variance correction pWAIC2 calculated as
Pn

i=1 V
S
s=1(log p(yi|✓s))

where VS
s=1 is the variance of S draws from the posterior (Gelman et al. 2014, p 173).
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To demonstrate the substantive value of the robust model, we conduct a brief investi-

gation of estimates for a subset of Supreme Court justices using visual evidence in Figure

3.We include (in the shaded area) the output from the dynamic model estimated by Martin

and Quinn (2002). One important contribution generated from the original model was con-

firmatory evidence that Supreme Court justice preferences changed meaningfully over time

(Martin and Quinn 2002, 2007). Our results corroborate this finding, and for most justices

there is little di↵erence in the dynamic and robust model estimates.

Yet, the smoothing pattern imposed by the dynamic modeling structure employed by the

original authors also precludes the possibility that justice preferences may change rapidly.

That a justice may suddenly become more liberal or conservative in their decision-making

may seem unlikely. Nevertheless, we find evidence of such changes in a small, but substan-

tively interesting set of cases. A brief examination suggests these rapid fluctuations are not

simply a modeling artifact. For example, William Rehnquist’s score suddenly becomes more

liberal in 1987. This was the first full year in which Rehnquist served as Chief Justice and it

is plausible that this change to the composition of the court led to a commensurate change

in Rehnquist’s voting patterns. As an additional validity check, we also consulted a criterion

variable generated by Epstein et al. (1996) that records a justice’s voting pattern on a simi-

lar liberal-conservative spectrum. These authors also identify a rapid change in Rehnquist’s

voting pattern, which indicates that this shift reflected real-world changes and is not simply

an artifact of our modeling assumptions.

Though we do not o↵er causal interpretation or explanation for these changes, investi-

gating rapid shifts in voting patterns is a promising area for future research. For example,

strategic explanations for Supreme Court justice behavior suggest that voting patterns are

a function of both a justice’s underlying political ideology and the anticipated actions and

preferences of their colleagues and external political entities (Epstein and Knight 2013).

Scholars adhering to this framework might argue that Rehnquist changed voting patterns

after becoming chief justice were a result of strategic incentives. Prior to becoming Chief
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Justice, Rehnquist was known for consistently voting with Chief Justice Burger, in part to

maintain their positive collegial relationship (Woodward and Armstrong 1979). As Chief

Justice, however, Rehnquist selected the majority opinion writer for all cases in which he

was also in the majority. This provides him with an avenue for substantively impacting court

decisions, even in cases where he may have otherwise been inclined to vote with the minor-

ity. We are agnostic to the validity of these potential explanations. Nonetheless, we find

it heartening that the new patterns uncovered by the robust model appear to corroborate

some existing arguments. In short, the robust model estimates help bring evidence about

such cases to the forefront by accommodating rapid changes – an insight that would remain

unobserved due to the smoothing induced by standard dynamic modeling procedures.

Pemstein, Meserve and Melton (2010)

Pemstein, Meserve and Melton (2010) generate country-year estimates of democracy using

a static latent variable model that uses ten indicators of democracy. These items include:

Polity (Marshall, Jaggers and Gurr 2006); Freedom House (2007); polyarchy (Coppedge

and Reinicke 1991); Bollen (2001); Vanhanen (2003); Arat (1991); Political Regime Change

(PRC) (Gasiorowski 1996); Bowman, Lehoucq and Mahoney (2005) (BLM); and Przeworski

et al. (2000) (PACL). Each of these items are assumed to be a unique approximation of a

given country’s latent level of democracy. While the items are measured on di↵erent scales,

the authors treat each as ordinal when linking the items to the latent level of democracy

through an ordinal probit function. The model is identified through the application of

a standard normal prior distribution on the latent level of democracy and uninformative,

uniform priors applied to the cut-point parameters for each item. We depart from the original

model slightly by linking the items to the latent trait using the ordered logit, rather than

ordered probit function. We also use item-specific slope parameters, instead of item-specific

variances, to account for the di↵erences in precision of each item. These modifications do

not lead to substantial changes in model estimates – the correlation between our replicated
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estimates of democracy and the original estimates is 0.987. In addition, we also estimate

dynamic and robust variants of the original model.

As with the Martin and Quinn (2002) replication, we also calculate WAIC for each of the

three models. The WAIC is 93,267, 79,237, and 65,082 for the static, dynamic, and robust

models respectively. The di↵erence between the static model and robust model is 28,185

with a standard error of 358.8. The di↵erence between the dynamic model and the robust

model is 14,029 with a standard error of 247.7. In terms of predictive accuracy, the robust

model is a substantial improvement upon both alternatives.

Figure 4 reports the posterior predictive checks used to assess model performance. With

some exception, we find that each of the models produce less accurate predictions for indica-

tors with many categories, and more accurate predictions for indicators with few categories.

The di↵erence in model performance is greatest for the polity indicator – here the static

model correctly predicts polity scores for 41 percent of observations, the dynamic model

does so for 61 percent, and the robust model does so for 90 percent. The static model does,

however, fair best when predicting Polyarchy, Bollen, Arat, and BLM, though the di↵erences

in accuracy are less stark for these variables. The models produce similar accuracy figures

for the remaining indicators (Freedom House, Vanhanen, PRC, and PACL). In Appendix F,

we evaluate how the models perform when predicting annual change for seven democracy

indicators. The robust model performs as well or better for every indicator. It also continues

to outperform the static model for Polity.

A brief examination of historical cases that experience shocks–displayed in Figure 5–

o↵ers additional support for the robust model. While the dynamic model produces narrower

credible intervals than the static model, but over-smooths and anticipates the sudden changes

to the level of democracy in these two countries. For the Philippines, the robust model,

identifies a steep decrease in the level of democracy in 1972 when Ferdinand Marcos declares

martial law and the onset of an autocratic regime. The robust model also estimates a

notable increase after 1981, when marital law ended, and another dramatic increase in 1987
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with the revolution that expelled Marcos from power. The robust dynamic model is also

able to capture sudden changes for the case of Afghanistan. The model even captures the

Saur Revolution, which occurred in 1978 and was quickly followed by the Soviet invasion in

1979. This sudden and short-lived institutional change is not observable in any of the other

models which again highlights the pitfalls associated with the over-smoothing produced by

the standard dynamic approach and constitutes an important validity check.

Discussion

Through simulated data and the reproduction of two existing latent variable models, we have

explored how a relatively simple modification to the dynamic latent variable model increases

the validity of the estimates of these variables when temporal shocks are present. Across a

variety of metrics, the robust dynamic model outperforms existing modeling techniques when

the latent traits are subject to volatility. Nevertheless, there is no guarantee that any single

modeling strategy will be equally well suited for use with all data types or for estimating

di↵erent latent concepts. The assumptions of the measurement model will influence the

conclusions researchers draw both about the underlying theoretical concept of interest, as

well as the empirical linkages between these concepts and other phenomena. We therefore

suggest researchers estimate both dynamic and robust models and then assess the relative

validity of the latent estimates with as many di↵erent evaluation tools as possible. Fit

statistics, posterior predictive checks, and visual analysis of the temporal patterns of several

well-known cases allowed us to evaluate the competing models without relying on a single

statistical tool. Overall, the robust latent variable model reduces the bias associated with

dynamic models without sacrificing e�ciency, which has lead to new insights about the

dynamic patterns of judicial ideology and democracy.
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Figure: 3: Sample of Judicial Ideology - Robust and Martin and Quinn Scores
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Note: Two sets of judicial ideology scores based on data from Martin and Quinn (2002). These

models are estimated using two di↵erent versions of the latent variable model (robust and dynamic).

The robust model is represented by the solid black line for the median value and the dashed lines

for the 2.5 and 97.5 credible interval. The dynamic model is represented by the shaded area, which

is the 2.5 to 97.5 credible interval.
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Figure 4: Posterior Predictive Checks – Pemstein, Meserve and Melton (2010) Replication
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BLM 3 275
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Note: This plot displays each models performance in accurately predicting the values of the ten

democracy indicators used to generate model estimates. 500 sets of predictions were randomly

drawn from the posterior distributions produced by each model. The horizontal axis reports the

percent of cases correctly predicted. Models are displayed along the vertical axis. Dots correspond

to the median value from the set of predictions, while solid lines denote the 2.5 and 97.5 percentile

values of each models performance. The static model estimates are colored purple, the dynamic

model is colored green, and the robust model orange.
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Figure: 5: The Philippines and Afghanistan, Latent Democracy Score – Pemstein,
Meserve and Melton (2010) Replication
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Note: Estimates of latent democracy level are displayed for the Philippines (first row) and

Afghanistan (second row). Mean estimates and 95 percent credible intervals are indicated with

a solid line and shaded region. For the case of the Philippines, the robust dynamic model is able to

clearly distinguish between the periods before, during, and after the Marcos regime. For the case of

Afghanistan, the robust dynamic model is able to clearly capture the short-lived Saur Revolution

in Afghanistan that occurred in 1978 and was quickly followed by the Soviet invasion in 1979.
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