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Abstract
Researchers face a tradeo� when applying latent variable models to time-series, cross-sectional data.
Static models minimize bias but assume data are temporally independent, resulting in a loss of e�iciency.
Dynamic models explicitly model temporal data structures, but smooth estimates of the latent trait across
time, resulting in bias when the latent trait changes rapidly. We address this tradeo� by investigating a
new approach for modeling and evaluating latent variable estimates: a robust dynamic model. The robust
model is capable of minimizing bias and accommodating volatile changes in the latent trait. Simulations
demonstrate that the robust model outperforms other models when the underlying latent trait is subject
to rapid change, and is equivalent to the dynamic model in the absence of volatility. We reproduce latent
estimates from studies of judicial ideology and democracy. For judicial ideology, the robust model uncovers
shocks in judicial voting patterns that were not previously identified in the dynamic model. For democracy,
the robustmodel providesmore precise estimates of sudden institutional changes such as the imposition of
martial law in the Philippines (1972–1981) and the short-lived Saur Revolution in Afghanistan (1978). Overall,
the robustmodel is a useful alternative to the standard dynamicmodel formodeling latent traits that change
rapidly over time.

Keywords: latent variables, dynamic modeling, Bayesian analysis

Political scientists are increasingly focused on improving the measurement of unobservable
concepts. Recent methodological and computational advances have led to a flourishing of latent
variablemodeling techniques that provide researcherswith ameans ofmeasuring these concepts
based on events, ratings, or other observed information that are assumed to be manifestations
of the unobservable latent trait (Martin and Quinn 2002; Carpenter et al. 2016; Imai, Lo, and
Olmsted 2016). These models have been applied across a variety of subfields, encompassing the
study of political ideology (Martin and Quinn 2002; Treier and Hillygus 2009; Kōnig, Marbach, and
Osnabrügge 2013; Barbera 2015; Caughey andWarshaw 2015; Pan and Xu 2018), political attitudes,
knowledge, and preferences (Blaydes and Linzer 2008; Pérez 2011; Stegmueller 2011, 2013; Jesse
2017), regime type (Treier and Jackman 2008; Pemstein, Meserve, and Melton 2010), UN voting
positions (Voeten 2000), human rights abuse (Fariss 2014; Schnakenberg and Fariss 2014), civilian
control of the military (Kenwick 2019), human rights treaty embeddedness (Fariss 2018), judicial
independence (Linzer and Staton 2016), and institutional transparency (Hollyer, Rosendor� and
Vreeland 2014).
In several recent applications, these models are applied to time-series cross-sectional data

(e.g., Treier and Jackman 2008; Pemstein, Meserve, and Melton 2010; Schnakenberg and Fariss

Authors’ note: An earlier version of this paper was presented at the annual meeting of the American Political Science
Association in Philadelphia, PA (2016) and the Latent Variable Mini-Conference at the Varieties of Democracy Institute
at the University of Gothenburg, Sweden (2016). We would like to thank the participants at these conferences and also
James Lo, Suzie Linn, Kyle Marquardt, Ryan McMahon, Dan Pemstein, Kevin Quinn, Brigitte Seim, Je� Staton, Jane
Sumner, Alex Tahk, and Anne Whitesell for helpful comments and suggestions. The estimates from this paper along
with the code necessary to implement the models in STAN and R are publicly available at a dataverse repository here:
https://doi.org/10.7910/DVN/SSLCFF (Reuning, Kenwick, and Fariss 2018).
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2014; Fariss 2014, 2018; Linzer and Staton 2016). Two modeling strategies are commonly applied
to accommodate this data structure, but both face limitationswhen confrontedwith certain types
of temporal dynamics. Until recently, the most commonly used latent trait model for time-series
cross-sectional data assumes that each observed time period is an independent observation.
This type of model is usually referred to as static. For many applications, this assumption is
appealing because estimates of the latent trait are determined exclusively by the observed data
for a particular unit at a given time point. As a result, static models easily accommodate rapid
changes in latent traits over time. Yet, the static approach ignores the time-series nature of the
data and imposes a tenuous assumption of local independence with respect to time.
More recently, the “dynamic approach” has emerged as a useful alternative (Jackman 2009,

471–485). Here, the time-series structure of the data is accommodated bymodeling the latent trait
as a random walk or through a local linear model. In Bayesian analysis, this is typically modeled
through the prior information assigned to the latent trait for units at each time point. In doing so,
these models smooth the estimates over time periods for a given unit. This smoothing is o�en
theoretically appealing and leads to more e�icient estimates (Armstrong II et al. 2014, 303–309).
There are limitations to both the static and dynamic strategies when modeling a potentially

volatile latent trait. Dynamic models will oversmooth these transitions, causing rapid changes to
appear as gradual transitions, thus biasing the resulting estimates. Static models accommodate
suddenchangesbutat the lossof e�iciencyandwithoutdirectlymodeling the temporaldynamics,
which are o�en of substantive interest. Assuming away the dynamic structure of the model,
leads to a loss of important information, which makes evaluating and testing hypotheses
involving latent concepts more di�icult. These limitations are important for political scientists
as many political constructs are characterized by punctuated equilibria or similar theoretical
processes where rapid change is possible a�er long periods of stasis (e.g., Leventoğlu and
Slantchev 2007). Political institutions, for example, o�en persist for generations only to collapse
or change suddenly (e.g., Grief and Laitin 2004). Exogenous shocksmay also result in concomitant
changes in individual level traits such as political preferences or partisan identification
(e.g., Baker et al. 2016).
In this article, we introduce a robust version of the standard dynamic model. We demonstrate

that the robust model retains the theoretically useful features of the dynamic model while
reducing bias in the estimates that result from over smoothing. This model changes the
distributional assumptions conventionally applied to the latent trait while still incorporating
temporal information. A�er a brief discussion of these three models, we evaluate their relative
performance.We find that the robustmodel outperforms conventionalmodeling choices across a
variety of metrics. Further, we find that the robust model performs as well as the dynamic model,
even when simulated conditions match the assumptions underlying the dynamic model.
Next, we reproduce and evaluate two common latent variables in political science: judicial

voting preferences (Martin and Quinn 2002) and democracy (Pemstein, Meserve, and Melton
2010). We find that the estimates from the robust latent variable model reveal previously
unobserved shocks and improve fit for both constructs. Substantively, the robust model provides
evidence that judicial voting patterns sometimes change rapidly for a subset of Supreme Court
justices. We also find that the robust model provides more precise estimates of democracy in
response to sudden political events such as the imposition of martial law that occurred in the
Philippines from 1972 through 1981 under the regimeof FerdinandMarcos and the short-lived Saur
Revolution in Afghanistan in 1978. The analyses indicate that the robust latent variable model
yields substantively meaningful insights not obtainable from existing latent variable modeling
strategies.
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1 Modeling Strategies and Simulation Analysis
We start by briefly discussing the static and dynamic modeling strategies and introducing the
robust modeling alternative. We also outline a simple data generating process and the priors
which we will use in a simulation analysis of the competing models.
We begin with a simple item response theory framework (IRT) with binary manifest variables.1

The latent trait, θit exists for each unit, i = 1, . . . ,N across each time period t = 1, . . . ,T . θit is not
observed directly, but determines the value of a series of manifest variables, or items, yk i t , where
k = 1, . . . ,K indexes the number of items observed. Thus, yi t k is the observed value for item k

for unit i at time t . For each item, αk and βk are estimated. These are commonly referred to as the
“di�iculty” and “discrimination” parameters, respectively and are analogous to an intercept and
slope in traditional logit regression. The likelihood function takes the following form, where Λ is
the logistic function:

L =
N ,T∏
i ,t=1

K∏
k=1

Λ(αk − βk θit)yi t k (1 −Λ(αk − βk θit))1−yi t k .

We place weakly informative, normal priors on the di�iculty and discrimination parameters. In
addition, βk , the di�iculty parameter, is constrained to be greater than 0. This is a common
identification constraint that resolves rotational invariance by preventing “flipping” where the
likelihood from β̂k and θ̂it is equal to the likelihood from−β̂k and−θ̂it. All the items are then coded
so that a 1 indicates increased levels of the latent trait, and a 0 decreased levels.2 Formally our
priors are:

αk ∼N(0, 3)

βk ∼HN(0, 3).

HN is the half-normal distribution, with support on [0,∞). All models presented here share these
priors on their item parameters.

1.1 Static Model
The three modeling strategies we present are di�erentiated by the prior information assigned
to the latent variable. The static model, places a standard normal prior on all units for all time
periods:
Static Model Prior

θit ∼ N(0, 1) [i = 1, . . . ,N & [t = 1, . . . ,T .

Estimates for eachunit in each timeperiodare thereforedi�erentiatedexclusively by the values
of the manifest variables for that unit at that time period. This allows for sudden changes in the
latent estimates in a unit between time periods. A shortcoming of this model is that it treats
each observation as independent. In the case where the manifest variables contain su�icient
information on the latent trait, thismodeling strategymay not be problematic. Unfortunately, this
is seldom the case when using social science data, where indicators are o�en coarse or missing.
As a result, these indicators o�en do not contain su�icient information to di�erentiate between
theoretically distinct units.

1 The models generalize to other types of manifest variables as well.
2 When the polarity of an item is not known then other identification constraints must be considered by the analyst (Martin
and Quinn 2002).
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1.2 Standard Dynamic Model
To address temporal nonindependence in the data, many researchers use a dynamic prior for
the latent trait (Martin and Quinn 2002; Kōnig, Marbach, and Osnabrügge 2013; Fariss 2014;
Schnakenberg and Fariss 2014; Caughey andWarshaw 2015). The choice of a “randomwalk” prior
on the latent variable is particularly common.
Researchers apply a standard normal distribution to the latent trait in the first observation

period for everyunit. For each subsequent timeperiod, theprior is normallydistributedwithmean
θi (t−1), and an innovation standard deviationσ which is either assigned by the researcher or,more
commonly, estimated from the data. Here, we assign a weakly informative prior to σ by using a
half-normal distribution with standard deviation of 3 andmean 0.3

Standard Dynamic Model Priors

θi1 ∼N(0, 1) [i = 1, . . . ,N

θit ∼N(θi (t−1),σ) [i = 1, . . . ,N & [t = 2, . . . ,T

σ ∼HN(0, 3).

This strategy trades the assumption that observations are independent with the assumption
that the latent trait will be correlated over time. As a result, estimates from dynamic models
typically have less uncertainty becausemore information is used to estimate each latent variable.
This also induces smoothing over time because changes between time periods are constrained.
When researchers have theoretical reasons to expect that the latent trait is relatively slow-moving
over time, both modeling features can be desirable. If, however, the latent trait is subject to rapid
fluctuations or state changes between time periods, this temporal smoothing can produce biased
estimates. The modeling strategy we introduce below is designed to address this problem while
still accounting for temporal dynamics.

1.3 Robust Dynamic Modeling
Our alternative strategy draws on the robustmodeling literature. Robustmodels, broadly defined,
weaken the parametric assumptions common to standard statistical models as a means of
accommodating unique data structures and the potential for influential outlying observations.
One simple modification commonly used is the substitution of normally distributed errors
with Student’s t -distributed errors (Lange, Little, and Taylor 1989; Lange and Sinsheimer 1993;
Gelman et al. 2014). A specific Bayesian approach to the use of the Student’s t -distribution
has been developed (Geweke 1993; Fonseca, Ferreira, and Migon 2008). This strategy has been
used to account for heterogeneity in growth models (Zhang et al. 2013), ordinal choice models
(Stegmueller 2013), and mixed e�ects models (Rosa, Gianola, and Padovani 2004) among others.
Within our context, potential outliers are “shocks” where values of the true latent variable change
suddenlywithin a unit’s time series. As a prior on the latent variable θ, the Student’s t -distribution
is less restrictive when estimating the temporal data generating process that relates to the
latent trait with the observed manifest variables because it has greater density in the tails when
compared to the standard normal distribution (for details on the Student’s t -distribution see
Supplementary Appendix A).
To develop a robust dynamicmodel, we set the prior for the first year in a particular time series

to a standard normal distribution.4 For every subsequent year, the prior then follows a Student’s
t -distribution, with four degrees of freedom. Setting the degrees of freedom to a relatively low

3 In our applications, σ is fixed across units, though this assumption can be relaxed to account for unit-specific variation
(Imai, Lo, and Olmsted 2016).

4 Inpractice, onecanalso substituteaStudent’s t -distributionwithaveryhighdegreesof freedom(e.g., 1,000),which closely
approximates the normal distribution.
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value increases the density of the tails of the distribution which allows “extreme values” to be
estimated from timeperiod to timeperiod. Thus, themodel smooths estimates across timeduring
periods of stability, but also allows for rapid changes in the latent trait during periods of volatility.
In the cases presented here we set the degrees of freedom and estimate the scale parameter σ .
In the appendix we discuss an alternative model specification where we estimate the degrees of
freedom parameter instead of σ , as well as a model that jointly estimates both parameters. We
find that this does not improve model fit while potentially compounding rotational identification
concerns in some cases and being computationallymore taxing. Because of this, we opt to set the
degrees of freedom at a low value of four, as recommended by Gelman et al. (2014).
Robust Dynamic Model Priors

θi1 ∼N(0, 1) [i = 1, . . . ,N

θit ∼T4(θi (t−1),σ) [i = 1, . . . ,N & [t = 2, . . . ,T

σ ∼HN(0, 3).

1.4 Potential Alternatives
In addition to the robust model there are several alternative modeling strategies that could be
used to accommodate temporal shocks. First, given an assumed data generating process that is a
combination of a dynamic process and a static process a finitemixturemodeling strategymight be
a useful strategy. We assess such amodel in Supplementary Appendix B and find that themixture
model is outperformed by the robust model in almost all cases.
Another potential strategy would be to employ a change-point model (Western and Kleykamp

2004) or regime switchingmodel (Hamilton 2010). Thesemodels capture the intuition that there is
a discrete change in the underlying process. However, estimating these types of models requires
a priori attention to the number of expected change points and are commonly employed only in
time-series analysis (e.g., Pang et al. 2012) but have seen some use in panel data (e.g., Joseph
et al. 1997; Spirling 2007). One of themainmodeling challenges is estimating the discrete number
of change points. This issue is particularly intractable for the types of punctuated equilibrium
processes discussed here where the number of shocks or change points that are likely to exist
in a given time-series are not known ex ante and vary across panels. In the univariate case,
there have been some very useful developments in models without a fixed number of change
points (Santifort, Sandler, and Brandt 2013). Other alternatives also exist for continuous time
latent variables that do not assume discrete time intervals (Tahk 2015) as well as latent growth
models which provide a flexible framework for specific theoretically driven assumptions about
latent change over time (Duncan and Duncan 2004). Evaluating all of these models is beyond the
scope of this paper but each o�ers important opportunities for generating new inferences about
unobservable concepts.

1.5 Simulation Analysis
To evaluate model performance we simulate conditions where the true data generating process
is known. We focus in particular on situations where there is some time-series structure to
the underlying latent trait. We do not evaluate any models in which there are no temporal
dependencies in the underlying data generating process (e.g., the static model) given our focus
on improving modeling techniques for data with dynamic temporal structures. While latent traits
are sometimes temporally independent and identically distributed, we focus on more common
conditionswhen this is not the case. In all our simulations, the latent trait is drawn froma standard
normal distribution in its first time period and follows a random-walk processwith the probability
of a “shock” therea�er. When a unit experiences a shock, it is re-drawn from a standard normal
distribution, thus inserting “breaks” in the time-series such that the latent trait is subject to the
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Figure 1.Model Estimates Across Two Sample Units.Note: 95%Credible Intervals for two sample units using
the four di�erent modeling strategies. The true latent value is displayed with a dark line, and is the same in
each row.

possibility of rapid change. From these “latent” variables, we estimate binary manifest indicators
that are recorded with error for each observation. With these data in place, we estimate variants
of the static, dynamic, and robust models and evaluate their performance under a variety of
conditions. Information on these analyses, along with additional information on the underlying
data generating process are available in the appendix.5 Here, we provide a brief overview of our
findings.
Figure 1 displays the di�erences in estimates of the latent trait from the static (le� column),

dynamic (center column), and robust (right column) for two sample units. These units were
simulated with the probability of shock was set to 0.01, and the innovation standard deviation
set to 0.05.6 The first of these units (top panels) is representative of cases where the latent trait
is relatively stable across time and does not experience a shock. The second (bottom panels)
represents a case where a shock to the latent trait occurs a�er period 15.
The e�iciency loss in the static model is apparent for the unit that did not experience a shock.

By e�iciency loss, we mean a decrease in the amount of information contained in the estimate
of the latent variable which translates into a flatter (and less informative) estimated probability
density for eachunitwithin the latent space. Although the true latent variable iswithin the credible
interval of the static model across all time points, the credible intervals vary widely around
it. This is because estimates at each time period are generated independently and so there is
relatively limited information used in each time period. As expected, the dynamic and robust
models generate lower estimates of uncertainty by leveraging time-series information in the data.
Of particular note is that the use of the Student’s t -distribution by the robustmodel does not lead
to a significant increase in estimates of uncertainty relative to thedynamicmodel. The advantages
of the robust model are apparent for the unit experiencing a shock. As before, the static model’s
credible intervals arewide, but almost always capture the true estimate. By contrast, the dynamic
model oversmooths the sudden changes in the time-series and therefore fails to produce accurate
credible intervals over several time periods a�er the shock. The robust model, by contrast,

5 We provide a more detailed discussion of the data generating process for the simulation in Supplementary Appendix C.
We assess model performance in the time surrounding shocks to the latent trait in Appendix C.2, accuracy in ranking
observations in Appendix C.3, within-unit rank correlations in Appendix C.4, cross-validated accuracy in Appendix C.5,
and di�erences between time periods in Appendix C.6. We also consider models that estimate the degrees of freedom
parameter from the Student’s t -distribution instead of the innovation standard deviation in Appendix C.7, and the
estimation of both of these parameters in Appendix C.8.

6 The simulation analyses in the appendix explore model performance with these parameters set to a variety of values. We
chose 0.01 and0.05 for this example because they represent plausible conditions for political science datawhere temporal
variation is o�en relatively low relative to cross-sectional variation, and where “shocks” occur, but are relatively rare.
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Figure 2.Model Accuracy in Time Surrounding Shocks to the Latent Variable. Note: The percentage of times
the true latent variable is within 95% credible intervals. The horizontal axis is the distance away from the
nearest shock. We omit a small number of observations that were within three time periods of two shocks. A
distribution of values is estimated by generating 50 di�erent simulated datasets—the bounds show the 20th
and 80th percentile.

produces relatively small credible intervals (in comparison to the staticmodel) and is also capable
of accounting for sudden changes to the true latent trait when the shock happens.
Next we show how these results generalize to many simulated units drawn from the described

data generating process. In Figure 2 we plot the percentage of observations where the true latent
trait value is containedwithin the 95% credible interval generated for eachmodel as a function of
the time before and a�er a shock to the latent trait (experienced at time t = 0). As expected, the
static model performs particularly well using this metric due to its large credible intervals. More
relevant for our purposes, the model performs equally well across all time periods, regardless of
whether and when a unit experienced a shock. By contrast, the dynamic model performs well for
units that havenot recently experienceda shock, andpoorly in the timeof or proximate to a shock.
This dip in accuracy is significantly mitigated, though not reduced entirely by the robust model.
Taken together, the simulationanalyses reportedhereand in theappendix indicate that the robust
model is a viable alternative to standard dynamic modeling choices, particularly for latent traits
subject to temporal volatility.

2 Substantive Applications
We now assess how the robust latent variable model performs using data from two important
applications of latent variable models: a model of judicial ideology fromMartin and Quinn (2002)
who originally used a dynamic model; and a model of democracy from Pemstein, Meserve, and
Melton (2010) who originally used a static model. For each, we estimate the original models and
compare these original modeling strategies to the robust latent variable model. We assess model
fit using theWidely Available Information Criterion (WAIC), posterior predictive checks, and visual
assessments of well-known cases.7

2.1 Martin and Quinn (2002)
Martin and Quinn (2002) design a latent variable model to measure United States Supreme Court
justice ideology. The units are Supreme Court justice years and the items are the votes that each
justice cast in a particular case. Each vote is coded zero or one depending onwhether it overturns
or a�irms a lower court decision. Justices serve for multiple years, and Martin and Quinn (2002)
use a dynamic model with randomwalk priors to model the position of the justices over time. We
replicate this model using the data made available on their website which extends the timespan
of the original model to contain the years 1937–2015.
Thesparsityofdataalongwitha lackof clearpolarity for votes requiredMartinandQuinn (2002)

to achieve identification through two modeling decisions. First, a subset of justices are assigned

7 All models are estimated in Stan (Carpenter et al. 2016) using four chains and 10,000 iterations. Convergence diagnostics
are in Appendix G.
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strong priors to allow them to act as anchors within the policy space. In addition, because of a
sparsity of data they—a�er some experimentation—fix the value of the innovation variance (σ2)
to 0.1.8

Fixing the value of σ2 warrants some additional discussion before proceeding. O�en
researchers estimate this parameter directly from the data, but sparse data structures such as
this sometimes lead research to fix σ2. This value must be chosen carefully. When σ2 → ∞, the
model will produce estimates for each period of time independently. Assigning σ2 a value that
is too large may produce a model that is not rotationally identified in cases where there are no
expectations about the direction of the relationship between items and the latent trait. When
σ2 = 0, the dynamicmodelwill produce a single time-invariant estimate of the latent trait. Setting
σ2 to a value that is too small therefore ignores temporal variationof the latent trait. For a standard
dynamic model, this is equivalent to fitting a flat line to a time-series.
The robustmodel is no less sensitive to thesemodeling decisions and sharesmany of the same

properties as the standard dynamic model. One important exception, is that as σ2 approaches
zero, the robust model may fit an approximately stepwise function to smooth linear trends in the
latent trait. This would result in the appearance of shocks in a time-series where none is present.9

We therefore recommend practitioners estimate the value of σ2 directly from the data when
possible. If this parametermustbe fixed,we recommend researchers evaluatemodel performance
using multiple values of σ2. At each step, practitioners should evaluate model performance
through a variety of metrics including those employed here: fit statistics such as WAIC; posterior
predictive checks (particularly in times surrounding the “shocks” identified by the robustmodel);
and visual inspection of the data.
We use a prior assignment and identification strategy similar to Martin and Quinn (2002),

including setting the innovation variance to 0.1 for all justices except Douglas and providing
informed priors around a subset justices for their initial year on the court. In addition, because
we use amore expansive dataset than originally employed byMartin andQuinn (2002) we impose
two additional priors on justices at the very end or very beginning of the time-series: Samuel Alito
is given a prior on θ centered at 1.5 and Hugo Black is given a prior on θ centered at −3. To ensure
rotational identification we constrain some justices to be strictly positive or negative.10 Finally, as
in Martin and Quinn (2002) we find that Douglas’s extremely limited and liberal voting pattern
leads to near separation so we tighten the innovation variance to 0.0001, slightly tighter than
the 0.001 imposed by Martin and Quinn (2002). In the robust model we set the scale parameter
in the Student’s t -distribution so that the overall innovation variance is 0.1 given a Student’s
t -distribution with four degrees of freedom.11

Weevaluatemodel fit through posterior predictive checks (Gelman andHill 2007; Gelman et al.
2014). We sample from the posterior distribution of the parameter estimates generated from each
model and use these values to make predictions about the votes cast by justices in each of the
cases heard during their tenure. For every draw, we compute the proportion of justice decisions
correctly predictedbyeachmodel. The robustmodel accurately predicts SupremeCourt decisions
72.95% of the time, while the dynamic model generates accurate estimates 72.77% of the time.

8 We also set Douglas to 0.001, as he was present at very few cases near the end of his term and is thereforemuch less likely
to change positions over time.

9 Appendix D contains a simulation analysis comparing the dynamic and robustmodelswith fixed values ofσ . In Appendix E
we evaluate the e�ect of either inflating or estimating σ2 for the Martin and Quinn (2002) replication and find no
substantive di�erences.

10 We constrainMarshall andBrennan tobe strictly negative (liberal) andRehnquist, Scalia, andThomas tobe strictly positive
(conservative).

11 The scale parameter in the Student’s t -distribution is similar but not equivalent to the variance parameter in the normal
distribution. For the normal distribution and the three parameter Student’s t -distribution to have the same variance, the
scaleparameterof theStudent’s t -distribution is set to (ν − 2)/νσnorm (ν is thedegreesof freedomandσnorm is the standard
deviation of the normal distribution). For the majority of justices we set this to 0.22 (for Douglass this is set to 0.007).
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Although this is a substantively small di�erence, it is probabilistically distinguishable from 0. The
fact that the robust model’s improvement is modest should be unsurprising, as the comparative
advantage of this model pertains to the relatively small subset of instances where a Supreme
Court justices’ voting position suddenly changes between years. Nevertheless, the improvement
in predictive power is substantively meaningful for the subset of cases that seem to experience
rapid fluctuations.
We estimate WAIC as a second means of comparing the models. WAIC is a fully Bayesian

alternative to DIC and is asymptotically equal to Bayesian Leave-One-Out Cross-Validation. WAIC
estimates the expected log pointwise predictive density (LPPD)12 by estimating the LPPD13 and
correcting it by the number of e�ective parameters (Furr 2017; Vehtari, Gelman, and Gabry 2016).
When estimating the expected model performance on new data, it is necessary to determine
the form that hypothetical out-of-sample data will take (Gelman et al. 2014). In this context,
we evaluate out-of-sample performance in terms of new realizations of a particular justice’s
decision on existing court cases. The LPPD is therefore calculated using the likelihood of a judicial
decision, given each judge’s latent preference. The e�ective numbers of parameters correction are
estimated using the summation of the variance of the log prediction density for each vote.14

Thedi�erence in theWAIC scores provides evidence that the robustmodel is outperforming the
original dynamic model. The estimate of WAIC for the dynamic replication is 46,852, reported on
the deviance scale. The robust model improves on this, with a WAIC of 46,647. This is a di�erence
of 205 with a standard error of 15.6—the robust model better fits the data than does the dynamic
model.
To demonstrate the substantive value of the robust model, we conduct a brief investigation

of estimates for a subset of Supreme Court justices using visual evidence in Figure 3. We include
(in the shaded area) the output from the dynamic model estimated by Martin and Quinn (2002).
One important contribution generated from the original model was confirmatory evidence that
Supreme Court justice preferences changed meaningfully over time (Martin and Quinn 2002,
2007). Our results corroborate this finding, and for most justices there is little di�erence in the
dynamic and robust model estimates.
Yet, the smoothing pattern imposed by the dynamic modeling structure employed by the

original authors also precludes the possibility that justice preferences may change rapidly. That
a justice may suddenly become more liberal or conservative in their decision-making may seem
unlikely. Nevertheless, we find evidence of such changes in a small, but substantively interesting
set of cases. A brief examination suggests these rapid fluctuations are not simply a modeling
artifact. For example, William Rehnquist’s score suddenly becomes more liberal in 1987. This was
the first full year in which Rehnquist served as Chief Justice and it is plausible that this change to
the composition of the court led to a commensurate change in Rehnquist’s voting patterns. As an
additional validity check, we also consulted a criterion variable generated by Epstein et al. (1996)
that records a justice’s voting pattern on a similar liberal-conservative spectrum. These authors
also identify a rapid change in Rehnquist’s voting pattern, which indicates that this shi� reflected
real-world changes and is not simply an artifact of our modeling assumptions.
Though we do not o�er causal interpretation or explanation for these changes, investigating

rapid shi�s in voting patterns is a promising area for future research. For example, strategic
explanations for Supreme Court justice behavior suggest that voting patterns are a function

12 This is
∑N
i Ef (log ppost(ỹi ))whereEf is the expectationover thedistributionof data fromthe truedata generatingprocess

and ỹi is a single new data point. The true data generating process is unknown, and so f must be estimated, but this leads
to the model appearing to fit the data better than it does.

13 LPPD can be calculated by using draws from the posterior distribution:
∑n
i log(1/S

∑S
s=1 p(yi `θ

s )) where θs is a single draw
from the posterior distribution of θ.

14 We use the summation of variance correction pWAIC2 calculated as
∑n
i=1 VS

s=1(log p(yi `θ
s )) whereVS

s=1 is the variance of
S draws from the posterior (Gelman et al. 2014, p. 173).
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Figure 3. Sample of Judicial Ideology—Robust and Martin and Quinn Scores. Note: Two sets of judicial
ideology scores basedondata fromMartin andQuinn (2002). Thesemodels are estimatedusing twodi�erent
versions of the latent variable model (robust and dynamic). The robust model is represented by the solid
black line for themedian value and thedashed lines for the 2.5 and97.5 credible interval. Thedynamicmodel
is represented by the shaded area, which is the 2.5 to 97.5 credible interval.

of both a justice’s underlying political ideology and the anticipated actions and preferences
of their colleagues and external political entities (Epstein and Knight 2013). Scholars adhering
to this framework might argue that Rehnquist’s changed voting patterns a�er becoming chief
justice were a result of strategic incentives. Prior to becoming Chief Justice, Rehnquist was
known for consistently voting with Chief Justice Burger, in part tomaintain their positive collegial
relationship (Woodward and Armstrong 1979). As Chief Justice, however, Rehnquist selected the
majority opinion writer for all cases in which he was also in the majority. This provides him
with an avenue for substantively impacting court decisions, even in cases where he may have
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otherwise been inclined to votewith theminority.Weare agnostic to the validity of thesepotential
explanations. Nonetheless, we find it heartening that the new patterns uncovered by the robust
model appear to corroborate some existing arguments. In short, the robust model estimates help
bring evidence about such cases to the forefront by accommodating rapid changes—an insight
that would remain unobserved due to the smoothing induced by standard dynamic modeling
procedures.

2.2 Pemstein, Meserve, and Melton (2010)
Pemstein,Meserve, andMelton (2010) generate country-year estimatesofdemocracyusinga static
latent variablemodel that uses ten indicators of democracy. These items include: Polity (Marshall,
Jaggers, and Gurr 2006); Freedom House (2007); Polyarchy (Coppedge and Reinicke 1991); Bollen
(2001); Vanhanen (2003); Arat (1991); Political Regime Change (PRC) (Gasiorowski 1996); Bowman,
Lehoucq, and Mahoney (2005) (BLM); and Przeworski et al. (2000) (PACL). Each of these items are
assumed to be a unique approximation of a given country’s latent level of democracy. While the
items aremeasured ondi�erent scales, the authors treat each as ordinalwhen linking the items to
the latent level of democracy through an ordinal probit function. The model is identified through
the application of a standard normal prior distribution on the latent level of democracy and
uninformative, uniform priors applied to the cut-point parameters for each item. We depart from
the original model slightly by linking the items to the latent trait using the ordered logit, rather
than ordered probit function. We also use item-specific slope parameters, instead of item-specific
variances, to account for the di�erences in precision of each item. Thesemodifications donot lead
to substantial changes in model estimates—the correlation between our replicated estimates of
democracy and the original estimates is 0.987. In addition, we also estimate dynamic and robust
variants of the original model.
As with the Martin and Quinn (2002) replication, we also calculate WAIC for each of the

three models. The WAIC is 93,267, 79,237, and 65,082 for the static, dynamic, and robust models
respectively. The di�erence between the static model and robust model is 28,185 with a standard
error of 358.8. The di�erence between the dynamic model and the robust model is 14,029 with
a standard error of 247.7. In terms of predictive accuracy, the robust model is a substantial
improvement upon both alternatives.
Figure 4 reports the posterior predictive checks used to assessmodel performance. With some

exception, we find that each of the models produce less accurate predictions for indicators with
many categories, andmore accurate predictions for indicators with few categories. The di�erence
inmodel performance is greatest for the polity indicator—here the static model correctly predicts
polity scores for 41 percent of observations, the dynamic model does so for 61 percent, and the
robust model does so for 90 percent. The static model does, however, fair best when predicting
Polyarchy, Bollen, Arat, and BLM, though the di�erences in accuracy are less stark for these
variables. The models produce similar accuracy figures for the remaining indicators (Freedom
House, Vanhanen, PRC, and PACL). In Appendix F, we evaluate how the models perform when
predicting annual change for seven democracy indicators. The robust model performs as well or
better for every indicator. It also continues to outperform the static model for Polity.
A brief examination of historical cases that experience shocks—displayed in Figure 5—o�ers

additional support for the robustmodel. Thedynamicmodel producesnarrower credible intervals
than the static model, but oversmooths and anticipates the sudden changes to the level of
democracy in these two countries. For the Philippines, the robust model, identifies a steep
decrease in the level of democracy in 1972 when Ferdinand Marcos declares martial law and the
onset of an autocratic regime. The robust model also estimates a notable increase a�er 1981,
whenmarital law ended, and another dramatic increase in 1987 with the revolution that expelled
Marcos frompower. The robust dynamicmodel is also able to capture sudden changes for the case
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Figure 4. Posterior Predictive Checks—Pemstein, Meserve, and Melton (2010) Replication. Note: This plot
displays each models performance in accurately predicting the values of the ten democracy indicators used
to generate model estimates. 500 sets of predictions were randomly drawn from the posterior distributions
produced by each model. The horizontal axis reports the percent of cases correctly predicted. Models are
displayed along the vertical axis. Dots correspond to the median value from the set of predictions, while
solid lines denote the 2.5 and 97.5 percentile values of eachmodels performance. The staticmodel estimates
are colored purple, the dynamic model is colored green, and the robust model orange.

of Afghanistan. The model even captures the Saur Revolution, which occurred in 1978 and was
quickly followed by the Soviet invasion in 1979. This sudden and short-lived institutional change
is not observable in any of the other models which again highlights the pitfalls associated with
the oversmoothing produced by the standard dynamic approach and constitutes an important
validity check.

3 Discussion
Through simulated data and the reproduction of two existing latent variable models, we have
explored how a relatively simple modification to the dynamic latent variable model increases the
validity of the estimates of these variables when temporal shocks are present. Across a variety
of metrics, the robust dynamicmodel outperforms existingmodeling techniques when the latent
traits are subject tovolatility.Nevertheless, there isnoguarantee thatany singlemodeling strategy
will be equally well suited for use with all data types or for estimating di�erent latent concepts.
The assumptions of themeasurementmodelwill influence the conclusions researchers drawboth
about the underlying theoretical concept of interest, as well as the empirical linkages between
these concepts and other phenomena. We therefore suggest researchers estimate both dynamic
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Figure 5. The Philippines and Afghanistan, Latent Democracy Score—Pemstein, Meserve, and Melton (2010)
Replication. Note: Estimates of democracy are displayed for the Philippines (first row) and Afghanistan
(second row). Mean estimates and 95 percent credible intervals are indicated with a solid line and shaded
region. For the case of the Philippines, the robust model is able to clearly distinguish between the periods
before, during, and a�er the Marcos regime. For the case of Afghanistan, the robust model is able to clearly
capture the short-lived Saur Revolution in Afghanistan that occurred in 1978 andwas quickly followed by the
Soviet invasion in 1979.

and robust models and then assess the relative validity of the latent estimates with as many
di�erent evaluation tools as possible. Fit statistics, posterior predictive checks, and visual analysis
of the temporalpatternsof severalwell-knowncasesallowedus toevaluate thecompetingmodels
without relying on a single statistical tool. Overall, the robust latent variable model reduces the
bias associatedwithdynamicmodelswithout sacrificing e�iciency,whichhas lead tonew insights
about the dynamic patterns of judicial ideology and democracy.

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2019.1.
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