Keith E. Schnakenberg, Christopher J. Fariss

References

A Dynamic Ordinal Item Response Theory Model with Application to Human Rights Data

Keith E. Schnakenberg Christopher J. Fariss

Contact

keschnak@wustl.edu and cjf0006@gmail.com

Plan of the Talk

References

Goal

Convince you that we have constructed a more precise and more informative measure of human rights

(日) (圖) (E) (E) (E)

2/26

A measure that you can use

Plan of the Talk

Keith E. Schnakenberg, Christopher J. Fariss

References

Issues with human rights data

Dynamic Ordinal Item Response Theory model (DO-IRT)

A more precise measure of human rights

Comparison to other measures

How to apply the new measure in statistical models

Current Measures of Human Rights

Keith E. Schnakenberg, Christopher J. Fariss

References

5-point Political Terror Scale (Gibney, Cornett and Wood)

9-point CIRI Physical Integrity Scale (Cingranelli and Richards)

Both scales are coded from Human Rights Country reports published annually by the US State Dept. and Amnesty Intl.

Problems with Measuring Human Rights

Keith E. Schnakenberg, Christopher J. Fariss

References

Describing the World

How confident are we in the precision of the data for each country in each year?

Choosing one number ignores the uncertainty inherent in combining many pieces of information

Modeling the World

Estimation issues with modeling ordinal data

Motivation for the Model

Keith E. Schnakenberg, Christopher J. Fariss

References

Build on the earlier dynamic IRT models (Martin and Quinn, 2002) and ordered IRT models (Treier and Jackman, 2008)

Incorporate temporal information into estimates of latent variables using item response theory (IRT)

Let the posterior estimate of θ in year t-1 become the prior estimate for θ in year t

The Model

Keith E. Schnakenberg, Christopher J. Fariss

References

Priors

$$\begin{array}{rcl} \theta_{t=1} & \sim & \mathcal{N}(0,1) \\ \theta_{t>1} & \sim & \mathcal{N}(\theta_{t-1},\sigma) \\ \sigma & \sim & U(0,1) \\ \beta_j & \sim & Gamma(4,3) \\ \tau_{j,K} & \sim & Gamma(4,3) \end{array}$$

Ordinal CIRI Variables

Keith E. Schnakenberg, Christopher J. Fariss

F	Physical Integrity Rights								
	Right	Explanation							
	Disappearances	Lack of deliberate disappearances of							
		citizens by the government							
	Extrajudicial	Lack of political and other extrajudicial							
	Killing	killings or unlawful depravation of life							
	Political	Lack of imprisonment because of							
	Imprisonment	religious, political or other beliefs							
Torture		Lack of torture and other							
		cruel, inhumane, or degrading							
		treatment or punishment							

Variable Assessment

Keith E. Schnakenberg, Christopher J. Fariss

References

What does θ look like?

<ロト < 部ト < 目ト < 目ト 目 のQC 9/26

Keith E. Schnakenberg, Christopher J Fariss

Variable Assessment

Keith E. Schnakenberg, Christopher J. Fariss

Convergent Validity							
		1	2	3	4		
1	Latent Physical Integrity	-	0.899	0.783	0.838		
2	CIRI Physical Integrity Index	_	_	0.762	0.830		
3	PTS Amnesty Index	_	_	_	0.800		
4	PTS State Dept. Index	-	-	-	-		

Variable Assessment

Democracy

4

A / 11 11

Aschminant validity								
		1	2	3	4			
1	Latent Physical Integrity	_	0.567	0.652	0.599			
2	CIRI Empowerment Index	_	-	0.955	0.810			
3	Latent Empowerment	_	-	_	0.875			

15 / 26

Comparison of θ Across Cases

Applying the New Measure

Keith E. Schnakenberg, Christopher J. Fariss

References

As an independent variable (with uncertainty)

As a dependent variable

Applying the New Measure

Keith E. Schnakenberg, Christopher J. Fariss

References

Independent Variable with Uncertainty

Create m=10 datasets with different draws from the distribution for each country-year θ

Estimate a statistical model for each dataset and combine inferences

The point estimate for each parameter is the mean from the m estimates, and the standard error is calculated using an equation developed by Rubin (1987)

Questions: cjf0006@gmail.com

Applying the New Measure

Keith E. Schnakenberg, Christopher J. Fariss

References

Dependent Variable

Use the mean estimate of θ since the statistical model will account for measurement error in the dependent variable

Use OLS or any other estimator for panel data with a continuous dependent variable

Can forget about ordered-logit and ordered-probit

Questions: cjf0006@gmail.com

Conclusion

Keith E. Schnakenberg, Christopher J. Fariss

References

Today's Talk

Dynamic Ordinal Item Response Theory model (DO-IRT)

A more precise measure of human rights

How to apply the new measure in statistical models as both and independent and dependent variable

(日) (圖) (E) (E) (E)

20 / 26

Questions: cjf0006@gmail.com

Conclusion

Keith E. Schnakenberg, Christopher J. Fariss

References

For More Information

http://dss.ucsd.edu/ cfariss/HumanRightsScores

How to guide is being written

Questions: cjf0006@gmail.com

Thank you

Appendix: Rubin (1987) Standard Error Formula

Keith E. Schnakenberg, Christopher J. Fariss

References

$$\sqrt{\frac{1}{m}\sum_{k}^{m}s_{k}^{2}\left(1+\frac{1}{m}\right)\sigma_{\beta}^{2}}$$

where s_k^2 is the standard error from dataset k, and σ_β^2 is the variance in the regression coefficients between datasets. In words, the standard error is the average standard error from each model, plus the variance in the regression coefficients times a correction factor for $m < \infty$.

Appendix: DO-IRT Model

Keith E. Schnakenberg, Christopher J. Fariss

References

Let $i=1,\ldots,N$ index cross-sectional units and $t=1,\ldots T$ index time periods.

In each time period observe values y_{ij} for each of $j=1,\ldots,J$ indicators for each unit

Each indicator is ordinal in nature and can take on K_j values.

The responses to each of the items depends on a single latent variable $\theta_{i,t}$ which may vary across units and over time within each unit.

Appendix: DO-IRT Model

Keith E. Schnakenberg, Christopher J. Fariss

References

 θ is a unidimensional latent variable

The model assumes *latent monotonicity*, which means that the item step response function is strictly increasing on θ ; formally, $\theta_a \leq \theta_b$ implies that $Pr[X_{i,t,j} \geq x | \theta_a] \leq Pr[X_{i,t,j} \geq x | \theta_b]$.

The model assumes *local independence*, which means that the responses depend only on θ , $Pr[X_{i,t,1} = x_{i,t,1}, X_{i,t,2} = x_{i,2} \cdots X_{i,t,J} = x_{i,t,J}|\theta] = \prod_{j=1}^{J} Pr[X_{i,t,j} = x_{i,t,j}|\theta].$

Appendix: DO-IRT Model

Keith E. Schnakenberg, Christopher J Fariss

References

The probability distribution for a given response to item j is given by $P[y_{ij} = k] = F(\alpha_{j,k} - \theta_{it}\beta_j) - F(\alpha_{j,k} - \theta_{it}\beta_j)$

 $F(\cdot)$ denotes the logistic cumulative distribution function.

Assuming local independence of responses across units, the likelihood function for β, α , and θ given the data is

$$\mathcal{L}(\beta, \alpha, \theta | y) = \prod_{i=1}^{N} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[F(\alpha_{j, y_{ij}} - \theta_{it} \beta_j) - F(\alpha_{j, y_{ij}-1} - \theta_{it} \beta_j) \right].$$

Keith E. Schnakenberg, Christopher J. Fariss

References

- Cingranelli, David L. and David L. Richards. 1999. "Measuring the Level, Pattern, and Sequence of Government Respect for Physical Integrity Rights." *International Studies Quarterly* 43(2):407–417.
 - Gibney, Mark, Linda Cornett and Reed M. Wood. 2009. "Political Terror Scale.". URL: http://www.politicalterrorscale.org/
 - Martin, Andrew D. and Keven M. Quinn. 2002. "Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953-1999." *Political Analysis* 10(2):134–153.

Rubin, Donald B. 1987. Multiple Imputation for Nonresponse in Surveys. New York, NY: J. Wiley Sons.

Treier, Shawn and Simon Jackman. 2008. "Democracy as a Latent Variable." American Journal of Political Science 52(1):201–217.