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Matching to Voting Records  
 

To choose which states to validate, we identified those states that provided (for 
research purposes) first names, last names, and full birthdates in publicly available voting 
records. From these, we chose a set that minimized cost per population, but allowed us to 
detect a 0.5% effect with 80% power given a treatment rate of 98% and a turnout rate of 
40% based on rough estimates. The cost of state records varied from $0 to $1500 per 
state. We excluded records from Texas because they had systematically excluded some 
individuals from their voting records (specifically, they did not report on the voting 
behavior of people that had abstained in the four prior elections). The resulting list of 
states included Arkansas, California, Connecticut, Florida, Kansas, Kentucky, Missouri, 
Nevada, New Jersey, New York, Oklahoma, Pennsylvania, and Rhode Island. These 
states account for about 40% of all registered voters in the U.S., and their 4 records 
yielded 6,338,882 matched observations of voters and abstainers that we could use to 
compare to treatment categories from the experiment. 
 

About 1 in 3 users were successfully matched to voter records (success depends 
on many factors, including voting eligibility, rates of registration, and so on). It is 
important to note that the match rate for our study is lower than the match rates in many 
other GOTV studies, in which more than 50% of users are matched. The primary reason 
for the low match rate is the age distribution of Facebook users; because the population 
of Facebook users shows positive skew relative to the country in general (i.e., Facebook 
users are younger), and young people are less likely to be registered voters, we were able 
to match fewer records. Additionally, as in other studies in which individuals self-enter 
data, matches are more difficult due to a lack of consistency in name conventions in the 
voter file and Facebook (for instance, a voter may be listed as “Lucille” in the voter 
record and “Lucy” in Facebook). All information was discarded after we finished the data 
analysis.  

 
In order to match information in Facebook to public voting records, we relied on a 

group-level matching procedure that preserves the privacy of individual actions while 
still allowing statistical analysis to be conducted at the individual level. We matched 
users to individuals on the registration list in the same state by first name, last name, and 
date of birth (dropping all instances that had duplicates) and set the level of error in 
individual assignments to be 5%. This means that a matched user identified as a voter had 
a 5% chance of being classified as an abstainer, and vice versa.  For all estimates that use 
validated voting we correct the standard errors to account for the 5% error rate. 
	

We give an example of the R code for the group-level matching procedure at the 
end of the Supplementary file. 
 



Distribution of Key Variables and Balance Testing 
 
Table S1 shows summary statistics for age, sex, and the following variables: 
 

• Identity as a Partisan. Respondents can choose to identify their partisanship. 
Particular party variables (Democrat and Republican) were coded as a 1 when the 
name of the party appeared in the user's political views and 0 otherwise. 
 

• Ideology. Facebook users can write in their political ideology in an open-ended 
response box. Particular ideology variables (Liberal and Conservative) were 
coded as a 1 when the ideological label appeared in the user's political views and 
0 otherwise. 
 

• Expressed Voting. For those respondents in the two treatment conditions, the site 
recorded when the respondent clicked the “I Voted” button. 
 

• Polling Place Search. For those respondents in the two treatment conditions, the 
site recorded when the respondent clicked the “Find Your Polling Place” link. 
 

• Validated Vote.  Respondents who had the same first name, last name, and 
birthdate as a record in their state’s voter file were matched at the group level to 
allow statistical analysis on the relationship between the treatment and real world 
behaviour (see below). 

 
 

Table S2 shows balance tests for the demographic variables.  There were no 
significant differences (all pairwise two-tailed t tests indicated p > 0.05) between the 
treatment and control groups on any of these variables, suggesting that random 
assignment was successful. 

 
Tables S3 show additional balance tests for the demographic variables of friends.  

These results show that the user treatment is uncorrelated with the attributes of the people 
the user is connected to, suggesting that any difference we find between friends of those 
who received the treatment and friends of those who were in the control group is either 
due to sampling variation or due to a causal effect of the user treatments on the friends.   
 
  



	
  Mean Min Max 
Age 34.7  

(SD 14.8) 
18 110 

Male 41.3% 0 1 
Partisan 0.2% 0 1 
Ideologue 0.8% 0 1 
Liberal 0.4% 0 1 
Conservative 0.5% 0 1 
Democrat 0.1% 0 1 
Republican 0.1% 0 1 
Self-Reported Vote 20.0% 0 1 
Polling Place Search 2.4% 0 1 
Validated Vote 50.8% 0 1 

	
Table S1. Summary statistics for 61 million Facebook users who logged in on 

Election Day. 
	 	



	
  Social Message Message No Message 
Age 34.894 (0.003) 34.907 (0.032) 34.904 (0.032) 

Female 58.145% (0.011%) 58.187 % (0.106%) 58.255% (0.106%) 
Partisan 0.198% (0.001%) 0.193% (0.009%) 0.197% (0.009%) 

Ideologue 0.730% (0.002%) 0.714% (0.018%) 0.764% (0.019%) 

Liberal 0.381% (0.001%) 0.355% (0.013%) 0.410% (0.014%) 

Conservative 0.397% (0.001%) 0.410% (0.014%) 0.413% (0.014%) 

Democrat 0.122% (0.001%) 0.108% (0.007%) 0.122% (0.008%) 

Republican 0.088% (0.001%) 0.099% (0.007%) 0.088% (0.006%) 

	
Table S2. Comparison of means across the two message types and the control.  

Here we show the mean and the standard error. It is important to note that 

people rarely self-report political characteristics on their Facebook profile (less 

than 2%, as shown). 

  



 Social Message Message No Message 
Age 29.829 (12.752) 29.815 (12.748) 29.829 (12.752) 

Female 59.414% (52.133%) 59.374% (52.135%) 59.382% (52.139%) 

Partisan 0.207% (3.153%) 0.206% (3.150%) 0.205% (3.149%) 

Ideologue 0.866% (4.819%) 0.863% (4.811%) 0.865% (4.811%) 

Liberal 0.410% (6.388%) 0.408% (6.376%) 0.408% (6.377%) 

Conservative 0.456% (6.741%) 0.455% (6.730%) 0.457% (6.744%) 

Democrat 0.106% (3.464%) 0.105% (3.451%) 0.105% (3.445%) 
Republican 0.101% (3.250%) 0.101% (3.247%) 0.100% (3.246%) 

Number of 
dyads 

8,890,938,491 90,886,141 91,017,926 

Number of 
users 

60,055,176 611,044 613,096 

 
Table S3. Comparison of means of friend attributes across the ego’s two 

message types and the control group.  Here we show the mean and the standard 

deviation. It is important to note that people rarely self-report political 

characteristics on their Facebook profile (less than 2%, as shown). 
  



 
 
	

# load necessary libraries   
library(digest) 
 
# determine the amount of time the program takes to excute 
time_start = Sys.time() 
 
# use the SIMyahtzee.R program to determine the number of observations 
necessary to achieve a pretermined level of preceision for the 
indvidual level estimates of the behavior  
required_obs <- 25 
 
# the log file caputes text information about the data processing as 
the program excutes   
log_file <- "log_file.txt" 
 
# Create a large set of salts to use.  We only have to do this once. 
loop_max = 1000 
quick.number.to.letter <- function(my_num) { 
 if (my_num <= 0) { 
  # This function not intended for negative numbers. 
  return("A") 
 } 
 results <- NULL 
 while (my_num != 0) { 
  remainder = my_num %% 26 
  my_num = floor(my_num/26) 
  results = paste(results, LETTERS[remainder+1], sep="") 
 } 
 return(results) 
} 
 
salts <- NULL 
for (i in 1:loop_max) { 
 salts <- c(salts, quick.number.to.letter(i)) 
} 
sum(duplicated(salts)) # Zero 
 
# Set the group size. (we selected 5 for our application but this is an 
arbitrary choice.) 
# No counts will be taken from groups not of this size. 
group_size = 5 
loop_count = 1 
 
# Load the destination dataset 
destination <- read.csv("DESTINATION_FILE.csv", header=TRUE) 
 
# Remove invalid records. 
destination$remove = (is.na(destination$dob_day) | 
is.na(destination$dob_month) | is.na(destination$dob_year) | 
is.na(destination$first_name) | is.na(destination$last_name)) 
destination$remove = (destination$remove | destination$dob_day == 0 | 
destination$dob_month == 0 | destination$dob_year == 0) 
destination$remove = (destination$remove | destination$first_name == 
"NULL" | destination$last_name == "NULL") 



destination <- destination[!destination$remove, 1:ncol(destination)] 
 
# Set the name to uppercase, format date as YYYYMMDD and concatenate 
all these to create the input to the hash. 
destination$tohash <- paste(toupper(destination$first_name), 
toupper(destination$last_name), 
format(as.Date(paste(destination$dob_year, "/", destination$dob_month, 
"/", destination$dob_day, sep="")),  
"%Y%m%d"), sep="")  
 
# Load the orgin file. 
orgin <- read.csv("ORIGIN_FILE.csv", header=TRUE) 
 
# Remove invalid origin data records. 
orgin$remove = (is.na(orgin$first_name) | is.na(orgin$last_name) | 
is.na(orgin$dob) | is.na(orgin$behavior)) 
orgin <- orgin[!orgin$remove,1:ncol(origin)] 
 
# Set the name to uppercase, format date as YYYYMMDD and concatenate 
all these to create the input to the hash. 
orgin$tohash <- paste(toupper(orgin$first_name), 
toupper(orgin$last_name), orgin$dob, sep="") 
 
### Begin a loop to repeatedly group origin records and use behavioral 
frequencies to label destination records ### 
start_destination_record_count = nrow(destination) # The termination 
condition is >= 99% labeled. 
labeled_destination_record_count = 0  
while ((loop_count <= loop_max) & 
((labeled_destination_record_count/start_destination_record_count) < 
.99)) { 
 
write(paste("-----", loop_count, "-----"), file=log_file, append=TRUE, 
sep="") 
write(paste("Begin iteration", loop_count, "at", Sys.time()), 
file=log_file, append=TRUE, sep="") 
 
# Calculate a hash for each row 
# Each round, we will add a different salt to the hash. 
destination$hash_value = sapply(paste(as.character(destination$tohash), 
salts[loop_count], sep=""), digest, algo="sha256", serialize=FALSE) 
 
# Only keep the last 7 hash places.  These values are the largest we 
can handle numerically. 
destination$hash_value = substr(destination$hash_value, 58, 64) 
 
# The mod value should be the number that will maximize the number of 
groups of specified group size 
mod_value = round(nrow(orgin)/group_size) 
 
# Mod to get each rows group label 
destination$group_label = 
as.numeric(as.hexmode(destination$hash_value)) %% mod_value 
 
 
# Calculate a hash for each row 
# Each round, we will add a different salt to the hash. 



orgin$hash_value = sapply(paste(as.character(orgin$tohash), 
salts[loop_count], sep=""), digest, algo="sha256", serialize=FALSE) 
 
# Only keep the last 7 hash places.  These values are the largest we 
can handle numerically. 
orgin$hash_value = substr(orgin$hash_value, 58, 64) 
 
# Group the origin file with the same mod value we used on the 
destination file 
orgin$group_label = as.numeric(as.hexmode(orgin$hash_value)) %% 
mod_value 
 
# Count the records per group and the number of people who exhibit the 
behavior per group 
ct1 = xtabs( ~ group_label, data=orgin) 
group_data = data.frame(as.numeric(names(ct1)), as.numeric(ct1)) 
names(group_data) = c("group_label", "group_count") 
 
ct2 = xtabs(behavior ~ group_label, data=orgin) 
group_data2 = data.frame(as.numeric(names(ct2)), as.numeric(ct2)) 
names(group_data2) = c("group_label", "group_behavior_count") 
 
# It is a safe assumption that ct1 and ct2 will have the same set of 
groups (unless you tell the R program to drop empty groups, which we 
don't). 
# It is NOT always a safe assumption that ct1 and ct2 will have a 
complete list of all possible groups. 
# It is possible some potential modulus remainder is not present in the 
group of observed hashes. 
group_data <- merge(group_data, group_data2) 
 
# Log some statistics concerning group sizes. 
write("Group Size summary:", file=log_file, append=TRUE, sep="") 
write(names(summary(group_data$group_count)), file=log_file, 
append=TRUE, sep="\t", ncolumns=6) 
write(summary(group_data$group_count), file=log_file, append=TRUE, 
sep="\t", ncolumns=6) 
 
# Find those groups that are of the previously specified group size. 
good_groups = (group_data$group_count == 5) 
 
write(paste("We looked for groups of size", group_size), file=log_file, 
append=TRUE, sep="") 
write(paste("We found", sum(good_groups), "such groups out of", 
length(good_groups), "total groups."), file=log_file, append=TRUE, 
sep="") 
if (sum(good_groups) == 0) { 
 # Provide unmatching group label if there are no good groups. 
 good_group_values = data.frame(-9999, -1) 
} else { 
 good_group_values = 
data.frame(group_data$group_label[good_groups], 
group_data$group_behavior_count[good_groups]) 
} 
names(good_group_values) = c("group_label", paste("yahtzee", 
loop_count, sep="")) 
 



destination <- merge(destination, good_group_values, all.x=TRUE, 
all.y=FALSE) 
 
# Remove the group_label and hash_value columns 
destination <- destination[,-match("group_label",names(destination))] 
destination <- destination[,-match("hash_value",names(destination))] 
 
# Check to see if we have enough obs for each destination record. 
destination$filled_columns = rowSums(!is.na(destination)) - 9  # There 
are variable columns in the data in our application.  All other are 
yahtzees. 
labeled_destination_record_count = sum(destination$filled_columns >= 
required_obs) 
 
write("Observations per row summary:", file=log_file, append=TRUE, 
sep="") 
write(names(summary(destination$filled_columns)), file=log_file, 
append=TRUE, sep="\t", ncolumns=6) 
write(summary(destination$filled_columns), file=log_file, append=TRUE, 
sep="\t", ncolumns=6) 
write(paste("How many destination records have at least", required_obs, 
"obs?", labeled_destination_record_count), file=log_file, append=TRUE,  
sep="") 
write(paste("What percent of all destination records have at least", 
required_obs, "obs?", 
labeled_destination_record_count/nrow(destination)), 
file=log_file, append=TRUE, sep="") 
 
# Remove the filled_columns column 
destination <- destination[,-
match("filled_columns",names(destination))] 
 
loop_count = loop_count + 1 
} 
### Ended the loop ### 
 
# Write out all the observed behavior counts for each destination 
record. 
write.table(destination, file="Results.csv", append=TRUE, 
col.names=FALSE, row.names=FALSE, sep=",") 
 
time_diff = Sys.time() - time_start 
write(print(time_diff), file=log_file, append=TRUE, sep="") 


